• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 214
  • 31
  • 25
  • 20
  • 13
  • 12
  • 9
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 399
  • 168
  • 94
  • 71
  • 70
  • 41
  • 40
  • 39
  • 35
  • 34
  • 32
  • 31
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Informing the practice of ground heat exchanger design through numerical simulations

Haslam, Simon R. January 2013 (has links)
Closed-loop ground source heat pumps (GSHPs) are used to transfer thermal energy between the subsurface and conditioned spaces for heating and cooling applications. A basic GSHP is composed of a ground heat exchanger (GHX), which is a closed loop of pipe buried in the shallow subsurface circulating a heat exchange fluid, connected to a heat pump. These systems offer an energy efficient alternative to conventional heating and cooling systems; however, installation costs are higher due to the additional cost associated with the GHX. By further developing our understanding of how these ground loops interact with the subsurface, it may possible to design them more intelligently, efficiently, and economically. To gain insight into the physical processes occurring between the GHX and the subsurface and to identify efficiencies and inefficiencies in GSHP design and operation, two main research goals were defined: comprehensive monitoring of a fully functioning GSHP and intensive simulation of these systems using computer models. A 6-ton GSHP was installed at a residence in Elora, ON. An array of 64 temperature sensors was installed on and surrounding the GHX and power consumption and temperature sensors were installed on the system inside the residence. The data collected were used to help characterize and understand the function of the system, provide motivation for further investigations, and assess the impact of the time of use billing scheme on GSHP operation costs. To simulate GSHPs, two computer models were utilized. A 3D finite element model was employed to analyse the effects of pipe configuration and pipe spacing on system performance. A unique, transient 1D finite difference heat conduction model was developed to simulate a single pipe in a U-tube shape with inter-pipe interactions and was benchmarked against a tested analytical solution. The model was used to compare quasi-steady state and transient simulation of GSHPs, identify system performance efficiencies through pump schedule optimization, and investigate the effect of pipe length on system performance. A comprehensive comparison of steady state and pulsed simulation concludes that it is possible to simulate transient operation using a steady state assumption for some cases. Optimal pipe configurations are identified for a range of soil thermal properties. Optimized pump schedules are identified and analysed for a specific heat pump and fluid circulation pump. Finally, the effect of pipe spacing and length on system performance is characterized. It was found that there are few design inefficiencies that could be easily addressed to improve general design practice.
192

Assessment Of Low Temperature Geothermal Resources

Arkan, Serkan 01 January 2003 (has links) (PDF)
One of the most applicable methods of low-temperature geothermal resource assessment is volumetric method. While applying volumetric method, the values of uncertain parameters should be determined. An add-in software program to Microsoft EXCEL, @RISK, is used as a tool to define the uncertainties of the parameters in volumetric equation. In this study, Monte Carlo simulation technique is used as the probabilistic approach for the assessment of lowtemperature Bal&ccedil / ova-Narlidere geothermal field. Although Bal&ccedil / ova-Narlidere geothermal field is being utilized for several direct heat applications, there exists limited data for resource assessment calculations. Assessment studies using triangular and uniform distribution type functions for each parameter gave the mean values of recoverable heat energy of the field as 25.1 MWt and 27.6 MWt, respectively. As optimistic values (90%), those values were found as 43.6 MWt and 54.3 MWt. While calculating these numbers, a project life of 25 years with a load factor of 50% is used.
193

Monitoring Of Chemical And Isotopic Compositions Of Geothermal Waters Along The North Anatolian Fault Zone

Suer, Selin 01 September 2004 (has links) (PDF)
This study aims to determine the chemical (anion-cation) and isotopic compositions (&amp / #948 / 18O-&amp / #948 / D-3H) of the geothermal waters along the North Anatolian Fault Zone (NAFZ) and highlight any possible seismicity-induced temporal variations during the course of two years (2002-2003) monitoring programme. The geothermal sites are alligned along a 800 km transect of the NAFZ and are, from west to east, Yalova, Efteni, Bolu, Mudurnu, Seben, KurSunlu, Hamam&ouml / z&uuml / , G&ouml / zlek and ReSadiye. The thermal waters of NAFZ are dominantly Na-HCO3, whereas the cold waters are dominantly Ca-HCO3 in character. The highest temperature (72.3&amp / #61616 / C) is recorded in Seben. The hot waters are slightly acidic to alkaline in character with pH values ranging between 5.92-7.97, while the cold waters are comparatively more alkaline with pH values between 6.50-8.83. Both hot and the cold waters are meteoric in origin. The hot waters have lower &amp / #948 / 18O-&amp / #948 / D and tritium values suggesting higher recharge altitudes for aquifers and longer residence times for waters, respectively, in the geothermal system (compared to the cold waters). Temporal variations are detected in both ionic and isotopic compositions of the cold and the hot waters, and these reflect seasonal variations for cold and seismicity-induced variations for hot waters. Although no major earthquakes (M&gt / 5) occurred along the NAFZ during the monitoring period, temporal variations recorded in Cl and 3H, and to a lesser extent in Ca and SO4 contents seem to correlate with seismicity along the NAFZ. In this respect, Yalova field deserves the particular attention since seismicity induced variations were better recorded in this field.
194

Tiefengeothermie Sachsen

Berger, Hans-Jürgen, Felix, Manfred, Görne, Sascha, Koch, Erhard, Krentz, Ottomar, Förster, Andrea, Förster, Hans-Jürgen, Konietzky, Heinz, Lunow, Christian, Walter, Katrin, Schütz, Holger, Stanek, Klaus, Wagner, Steffen 24 May 2011 (has links) (PDF)
In drei Gebieten Sachsens wurde durch einen Forschungsverbund unter Leitung des LfULG die Nutzung der petrothermalen Geothermie zur Strom- und Wärmegewinnung untersucht. In der Elbezone im Raum Dresden, in Freiberg und Aue-Schneeberg wurden geologische, petrophysikalische und thermische Daten aufgearbeitet und dreidimensionale Modelle bewertet. Die Ergebnisse zeigen, dass eine Stromerzeugung durch Tiefenaufschlüsse bis 5 km Tiefe in allen drei Untersuchungsgebieten möglich ist. Die Temperaturmodelle weisen in 5 km Tiefe Werte zwischen 105 und 190 °C auf. Dabei verfügt das Untersuchungsgebiet Aue-Schneeberg über die besten Voraussetzungen für die Errichtung eines Geothermiekraftwerkes.
195

Geothermal and ground water exploration on Maui, Hawaii, by applying D.C. electrical soundings

Mattice, Mark D 8 1900 (has links)
Twenty-one Schlumberger resistivity soundings were performed on the island of Maui. Analysis consisted of one-dimensional modeling using an automatic ridge-regression inversion algorithm (Anderson, 1979). The inversion results were compared with available well-log information and geologic maps in order to make geologic interpretations. The soundings were conducted primarily to estimate the depth to and the electrical resistivity of, seawater-saturated basalt for different parts of the island. The resistivity of seawater-saturated basalt on Maui ranges between 3.5 and 60 ohm-meters. The lowest values occurred near Ukumehame canyon, on the south rift zone of West Maui. In this area, which is the site of a warm water (33°C) well, the computed resistivity for seawater-saturated basalt is about 4 ohm-m. Using typical Hawaiian basalt porosity values of 15% to 25%, Archie's Law implies temperatures of between 62° and l7loC at depths below 200 meters in the Ukumehame area. Freshwater piezometric heads were estimated from the sounding data. The largest freshwater head (91 m) was obtained in Keanae valley. The inferred large volume of freshwater is perched on Keanae alluvial valley fill and is observed in a well (W100) towards the back of the valley. All other freshwater heads are under 4 m, indicating that the freshwater lens is rather thin near the coast at the areas surveyed. / ill / maps
196

Numerical Simulation of a Hot Dry Rock Geothermal Reservoir in the Cooper Basin, South Australia

Bronwyn Muller Unknown Date (has links)
This thesis describes the development and production of numerical simulations of the creation of a Hot Dry Rock (HDR) geothermal reservoir. This geothermal reservoir that was simulated is owned by Geodynamics Limited and is located in the Cooper Basin, South Australia. The simulations show the geometry of the geothermal reservoir and predict the productive lifespan of the reservoir. Geothermal energy, which is the thermal energy that is stored in the interior of the earth, is an enormous energy source and as such there is great interest in technology that allows this energy to be harnessed. The HDR process of extracting the geothermal energy from rock involves drilling a borehole to a suitable depth and injecting cold water into the rock via this well (known as the injection well) to create a reservoir by opening up fractures in the rock. As water is forced through the reservoir, heat is extracted from the rock via conduction and transferred to the water, creating an heat exchange. Warm water is brought to the surface via another well known as the extraction well. The heat from the water is used to generate electricity and then the water is fed back into the injection well, completing the cycle. The creation of a HDR geothermal reservoir comprises of many aspects: the injection of the fluid into the jointed rock system, the opening and shearing of the joints, the creation of the fluid reservoir in the rock and the temperature effects of the fluid flow through the joints. This work incorporates all of these aspects. Due to the multi-physics nature of this process multiple computational modelling strategies were implemented to allow for authentic simulation of the entire process. The mechanical rock behaviour was primarily simulated the Distinct Element Method. This two dimensional Distinct Element Method program allowed for a realistically scaled model of the whole geothermal reservoir to be developed. This model was particularly useful for modelling the joint behaviour as the discrete nature of this method compares well with the joint system on such a scale. A discrete particle based model was used to model the joint behaviour on a small scale. These models demonstrated the behaviour of joints under compressional strain, showing slip and the effects of joint dilatancy. The productive lifespan of the geothermal reservoir was modelled using a Finite Element Method program based on Darcy's Law and an height-averaged heat equation. The aim of this model was to simulate the effects on the rock temperature of the fluid flow through the reservoir. The lifespan of the reservoir with differing well geometries was tested using this model to show which geometry would extend the productive lifetime of the geothermal reservoir. The results produced from the DEM models showed that the reservoir geometry is very much dependent upon the joint angle, and under the Cooper Basin stress regime steeper joints will be more likely to open. Joint dilatancy also affects the fluid flow rates as the amount of joint opening is dependent upon the joint dilatancy angle. The modelling of the temperature drawdown of the rock due to the fluid flow showed that a square configuration of wells is the ideal configuration to prolong the productive lifespan of the HDR geothermal reservoir. Results produced with the modelling parameters provided by Geodynamics Limited indicate that the productive lifespan of the Cooper Basin HDR geothermal reservoir created is approximately 50 years. This reservoir is only one of many that can be created at the site to prolong the productivity of the energy plant. The combined results of this modelling strategy give an overall image of the creation and lifetime of the HDR geothermal energy plant in the Cooper Basin.
197

Numerical Simulation of a Hot Dry Rock Geothermal Reservoir in the Cooper Basin, South Australia

Bronwyn Muller Unknown Date (has links)
This thesis describes the development and production of numerical simulations of the creation of a Hot Dry Rock (HDR) geothermal reservoir. This geothermal reservoir that was simulated is owned by Geodynamics Limited and is located in the Cooper Basin, South Australia. The simulations show the geometry of the geothermal reservoir and predict the productive lifespan of the reservoir. Geothermal energy, which is the thermal energy that is stored in the interior of the earth, is an enormous energy source and as such there is great interest in technology that allows this energy to be harnessed. The HDR process of extracting the geothermal energy from rock involves drilling a borehole to a suitable depth and injecting cold water into the rock via this well (known as the injection well) to create a reservoir by opening up fractures in the rock. As water is forced through the reservoir, heat is extracted from the rock via conduction and transferred to the water, creating an heat exchange. Warm water is brought to the surface via another well known as the extraction well. The heat from the water is used to generate electricity and then the water is fed back into the injection well, completing the cycle. The creation of a HDR geothermal reservoir comprises of many aspects: the injection of the fluid into the jointed rock system, the opening and shearing of the joints, the creation of the fluid reservoir in the rock and the temperature effects of the fluid flow through the joints. This work incorporates all of these aspects. Due to the multi-physics nature of this process multiple computational modelling strategies were implemented to allow for authentic simulation of the entire process. The mechanical rock behaviour was primarily simulated the Distinct Element Method. This two dimensional Distinct Element Method program allowed for a realistically scaled model of the whole geothermal reservoir to be developed. This model was particularly useful for modelling the joint behaviour as the discrete nature of this method compares well with the joint system on such a scale. A discrete particle based model was used to model the joint behaviour on a small scale. These models demonstrated the behaviour of joints under compressional strain, showing slip and the effects of joint dilatancy. The productive lifespan of the geothermal reservoir was modelled using a Finite Element Method program based on Darcy's Law and an height-averaged heat equation. The aim of this model was to simulate the effects on the rock temperature of the fluid flow through the reservoir. The lifespan of the reservoir with differing well geometries was tested using this model to show which geometry would extend the productive lifetime of the geothermal reservoir. The results produced from the DEM models showed that the reservoir geometry is very much dependent upon the joint angle, and under the Cooper Basin stress regime steeper joints will be more likely to open. Joint dilatancy also affects the fluid flow rates as the amount of joint opening is dependent upon the joint dilatancy angle. The modelling of the temperature drawdown of the rock due to the fluid flow showed that a square configuration of wells is the ideal configuration to prolong the productive lifespan of the HDR geothermal reservoir. Results produced with the modelling parameters provided by Geodynamics Limited indicate that the productive lifespan of the Cooper Basin HDR geothermal reservoir created is approximately 50 years. This reservoir is only one of many that can be created at the site to prolong the productivity of the energy plant. The combined results of this modelling strategy give an overall image of the creation and lifetime of the HDR geothermal energy plant in the Cooper Basin.
198

Numerical Simulation of a Hot Dry Rock Geothermal Reservoir in the Cooper Basin, South Australia

Bronwyn Muller Unknown Date (has links)
This thesis describes the development and production of numerical simulations of the creation of a Hot Dry Rock (HDR) geothermal reservoir. This geothermal reservoir that was simulated is owned by Geodynamics Limited and is located in the Cooper Basin, South Australia. The simulations show the geometry of the geothermal reservoir and predict the productive lifespan of the reservoir. Geothermal energy, which is the thermal energy that is stored in the interior of the earth, is an enormous energy source and as such there is great interest in technology that allows this energy to be harnessed. The HDR process of extracting the geothermal energy from rock involves drilling a borehole to a suitable depth and injecting cold water into the rock via this well (known as the injection well) to create a reservoir by opening up fractures in the rock. As water is forced through the reservoir, heat is extracted from the rock via conduction and transferred to the water, creating an heat exchange. Warm water is brought to the surface via another well known as the extraction well. The heat from the water is used to generate electricity and then the water is fed back into the injection well, completing the cycle. The creation of a HDR geothermal reservoir comprises of many aspects: the injection of the fluid into the jointed rock system, the opening and shearing of the joints, the creation of the fluid reservoir in the rock and the temperature effects of the fluid flow through the joints. This work incorporates all of these aspects. Due to the multi-physics nature of this process multiple computational modelling strategies were implemented to allow for authentic simulation of the entire process. The mechanical rock behaviour was primarily simulated the Distinct Element Method. This two dimensional Distinct Element Method program allowed for a realistically scaled model of the whole geothermal reservoir to be developed. This model was particularly useful for modelling the joint behaviour as the discrete nature of this method compares well with the joint system on such a scale. A discrete particle based model was used to model the joint behaviour on a small scale. These models demonstrated the behaviour of joints under compressional strain, showing slip and the effects of joint dilatancy. The productive lifespan of the geothermal reservoir was modelled using a Finite Element Method program based on Darcy's Law and an height-averaged heat equation. The aim of this model was to simulate the effects on the rock temperature of the fluid flow through the reservoir. The lifespan of the reservoir with differing well geometries was tested using this model to show which geometry would extend the productive lifetime of the geothermal reservoir. The results produced from the DEM models showed that the reservoir geometry is very much dependent upon the joint angle, and under the Cooper Basin stress regime steeper joints will be more likely to open. Joint dilatancy also affects the fluid flow rates as the amount of joint opening is dependent upon the joint dilatancy angle. The modelling of the temperature drawdown of the rock due to the fluid flow showed that a square configuration of wells is the ideal configuration to prolong the productive lifespan of the HDR geothermal reservoir. Results produced with the modelling parameters provided by Geodynamics Limited indicate that the productive lifespan of the Cooper Basin HDR geothermal reservoir created is approximately 50 years. This reservoir is only one of many that can be created at the site to prolong the productivity of the energy plant. The combined results of this modelling strategy give an overall image of the creation and lifetime of the HDR geothermal energy plant in the Cooper Basin.
199

Mathematical modelling of underground flow processes in hydrothermal eruptions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Palmerston North, New Zealand

Smith, Thomasin Ann January 2000 (has links)
This thesis reports on a study of underground fluid flow and boiling processes which take place in hydrothermal eruptions. A conceptual model is presented for the eruptive process and a laboratory scale physical model confirming the effectiveness of this process is described. A mathematical formulation of the underground flow problem is given for two fluid flow regimes: two-phase homogeneous mixture (HM) flow and separable two-phase (SP) flow. Solutions to the system of equations obtained are solved under the simplifying assumptions of two-dimensional steady isothermal flow and transient non-isothermal horizontal flow. The main contribution of the study on steady isothermal flows is a description of how the ground flow may recover following a hydrothermal eruption. A numerical technique developed for plotting the streamlines in this case (and verified against analytic results) may also have applications in solving the steady non-isothermal flow problem. The main contribution of the study on the transient horizontal flow problem is a comparison of the differing predictions of HM and SP flow. The rate at which a boiling front progresses through a porous medium and the degree of boiling which occurs is described for each fluid flow regime. A set of horizontal physical experiments and numerical simulations have also been carried out for comparison with the mathematical model. Qualitative results for these three models agree. Suggestions given for improvements to the design of the physical experiment provide a basis for future study into the type of flow which occurs in hydrothermal eruptions
200

Numerical Simulation of a Hot Dry Rock Geothermal Reservoir in the Cooper Basin, South Australia

Bronwyn Muller Unknown Date (has links)
This thesis describes the development and production of numerical simulations of the creation of a Hot Dry Rock (HDR) geothermal reservoir. This geothermal reservoir that was simulated is owned by Geodynamics Limited and is located in the Cooper Basin, South Australia. The simulations show the geometry of the geothermal reservoir and predict the productive lifespan of the reservoir. Geothermal energy, which is the thermal energy that is stored in the interior of the earth, is an enormous energy source and as such there is great interest in technology that allows this energy to be harnessed. The HDR process of extracting the geothermal energy from rock involves drilling a borehole to a suitable depth and injecting cold water into the rock via this well (known as the injection well) to create a reservoir by opening up fractures in the rock. As water is forced through the reservoir, heat is extracted from the rock via conduction and transferred to the water, creating an heat exchange. Warm water is brought to the surface via another well known as the extraction well. The heat from the water is used to generate electricity and then the water is fed back into the injection well, completing the cycle. The creation of a HDR geothermal reservoir comprises of many aspects: the injection of the fluid into the jointed rock system, the opening and shearing of the joints, the creation of the fluid reservoir in the rock and the temperature effects of the fluid flow through the joints. This work incorporates all of these aspects. Due to the multi-physics nature of this process multiple computational modelling strategies were implemented to allow for authentic simulation of the entire process. The mechanical rock behaviour was primarily simulated the Distinct Element Method. This two dimensional Distinct Element Method program allowed for a realistically scaled model of the whole geothermal reservoir to be developed. This model was particularly useful for modelling the joint behaviour as the discrete nature of this method compares well with the joint system on such a scale. A discrete particle based model was used to model the joint behaviour on a small scale. These models demonstrated the behaviour of joints under compressional strain, showing slip and the effects of joint dilatancy. The productive lifespan of the geothermal reservoir was modelled using a Finite Element Method program based on Darcy's Law and an height-averaged heat equation. The aim of this model was to simulate the effects on the rock temperature of the fluid flow through the reservoir. The lifespan of the reservoir with differing well geometries was tested using this model to show which geometry would extend the productive lifetime of the geothermal reservoir. The results produced from the DEM models showed that the reservoir geometry is very much dependent upon the joint angle, and under the Cooper Basin stress regime steeper joints will be more likely to open. Joint dilatancy also affects the fluid flow rates as the amount of joint opening is dependent upon the joint dilatancy angle. The modelling of the temperature drawdown of the rock due to the fluid flow showed that a square configuration of wells is the ideal configuration to prolong the productive lifespan of the HDR geothermal reservoir. Results produced with the modelling parameters provided by Geodynamics Limited indicate that the productive lifespan of the Cooper Basin HDR geothermal reservoir created is approximately 50 years. This reservoir is only one of many that can be created at the site to prolong the productivity of the energy plant. The combined results of this modelling strategy give an overall image of the creation and lifetime of the HDR geothermal energy plant in the Cooper Basin.

Page generated in 0.0323 seconds