• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des glaces interstellaires dans la complexité moléculaire de l’espace : modélisation par les méthodes de la chimie théorique / Role of interstellar ices in the molecular complexity in space : Modelling by theoretical chemistry methods

Ghesquière, Pierre 04 November 2015 (has links)
Les glaces du milieu interstellaire sont invoquées comme l'une des origines de la formation de molécules organiques complexes dans l'espace. En effet, elles constituent un support catalytique pour des réactions chimiques et pourraient ainsi expliquer la formation de molécules d'intérêt prébiotique. Toutefois, en raison de la faible température des milieux considérés, la vitesse de la réaction est contrainte par le déplacement des différentes réactifs l'un vers l'autre. L'objectif de cette thèse est donc de traiter la réactivité et la diffusion de molécules simples dans les glaces interstellaires. Je présente dans cette thèse les résultats de l'étude de la réaction entre le dioxyde de carbone et l'ammoniac dans les glaces interstellaires. Cette étude a été effectuée au Laboratoire Univers et Particules de Montpellier ; elle combine différentes méthodes de la chimie théorique et confronte les résultats avec ceux issus d'expériences que j'ai réalisées au Laboratoire de Physique des interactions Ioniques et Moléculaires de l'Université d'Aix-Marseille. Dans une première partie, des simulations de dynamique moléculaire classiques sont employées pour simuler un modèle de glace amorphe basse densité. Ce modèle est utilisé pour simuler la trajectoire de petites molécules (NH3, CO, CO2, H2CO) dans cette glace et en déduire des coefficients de diffusion à différentes températures. Ces résultats sont comparés à des résultats expérimentaux de diffusion du dioxyde de carbone ce qui valide la méthode théorique utilisée et permet de suggérer un mécanisme pour ce processus de diffusion. Dans une deuxième partie, la réaction entre le dioxyde de carbone et l'ammoniac est traitée dans le cadre de la théorie de la fonctionnelle densité par une approche « super-molécule ». Dans cette approche, le profil d'énergie et le mécanisme de la réaction dans des complexes moléculaires xNH3:CO2:yH2O sont étudiés. Deux produits de la réaction sont localisés : le carbamate d'ammonium et l'acide carbamique. La barrière d'énergie de la réaction obtenue est similaire à celle obtenue expérimentalement, et le carbamate d'ammonium est confirmé comme produit majoritaire de la réaction. Le profil d'énergie obtenu par cette approche « super-molécule » est ensuite étudié par dynamique moléculaire ab initio contrainte et le profil d'énergie libre est calculé par la méthode d'Intégration Thermodynamique. Cette approche confirme la forme générale du profil d'énergie et met en évidence un fort effet entropique du réseau d'eau. Je dresse finalement des conclusions sur les plans méthodologiques et astrochimiques permettant d'inscrire ma thèse dans des perspectives futures, notamment en incluant les barrières d'énergie de diffusion et de réaction, dans des modèles astrochimiques prenant en compte directement les réactions chimiques dans les glaces interstellaires. / It is postulated nowadays that complex organic molecules in space form on the surface and in the volume of interstellar ices. These ices can catalyse chemical reactions what could explain the formation of prebiotic molecules. However, because of the low temperatures, the diffusion of the reactants one towards another is slow, limiting their reactivity. The objectif of this thesis is to treat the reactivity and the diffusion of simple molecules in interstellar ices. I present in this thesis the results of the study of the chemical reaction between carbon dioxide and ammonia in interstellar ices. This study was conducted in the Laboratoire Univers et Particules de Montpellier : it combines various theoretical chemistry methods and confront the results to experimental ones I participated in at the Laboratoire de Physique des Interactions Ioniques etMoléculaires of the Aix-Marseille university. In a first part, classical molecular dynamic simulations are used to simulate a low-density amorphous ice model and to calculate the diffusion coefficients at various temperatures of a series of small molecules (NH3, CO, CO2, H2CO). These results are compared to the experimental diffusion coeficients of the carbon dioxide validating the theoretical approach used and allowing to porpose a mechanism for the diffusion process. In a second part, the reaction between carbon dioxide and ammonia is studied in the frame of Density-Functional Theory using a « super-molecular » approach. In this approach, the reaction energy profile for the molecular complexes xNH3:CO2:yH2O, is studied. Two reaction products are localised : the ammonium carbamate and the carbamic acid. The reaction energy barrier obtained by these calculations is similar to the one obtained experimentally, and the ammonium carbamate is confirmed as the major reaction product. The obtained energy profile is therfore investigated by constrained ab initio molecular dynamics and the free energy profile is computed with the Thermodynamics Integration method. These calculations confirme the general form of the previous energy profile and enlight the strong entropic effect of the water network. Finally, conclusions are drawn, and perspectives on methodological as well as on astrochemical aspects, as the inclusion of the reaction and diffusion energy barriers I calculated in astrochemical models, are given.
2

Simulations expérimentales en laboratoire pour la préparation à l'analyse des données issues de missions spatiales, ainsi que pour l'étude de l'impact en exobiologie de l'évolution de la matière organique au sein d'environnements astrophysiques / Experimental simulations of the evolution of organic matter in astrophysical environments : a study in preparation for the analysis of astrobiologically relevant data acquired from space missions

Fresneau, Aurélien 15 December 2016 (has links)
Les grains de poussière se trouvant dans les nuages moléculaires denses jouent un grand rôle dans la formation de molécules organiques complexes. Ces grains sont recouverts d'un manteau glacé contenant des molécules primitives. Au cours de l'évolution des nuages moléculaires vers des systèmes planétaires, les grains sont soumis à des processus énergétiques transformant la matière organique présente dans les glaces. Les grains finissent par être intégrés dans les petits corps du système solaire tels que les comètes et les astéroïdes. Cette thèse cherche à simuler en laboratoire l'évolution chimique de ces glaces. Des analogues de ces glaces sont formés sur un substrat à basse température, et sont irradiés avec des photons UV et/ou réchauffés afin de simuler les processus astrophysiques. On forme ainsi un résidu organique que l'on caractérise grâce à la spectroscopie infrarouge à transformée de Fourier (IRTF) et la spectrométrie de masse à très haute résolution (VHRMS) par Orbitrap.Nous avons d'abord effectué des études mécanistiques centrées autour de la formation d'aminoalcools et d'hydroxynitriles lors du réchauffement de glaces contenant de l'acétaldéhyde (CH$_3$CHO) ou de l'acétone ((CH$_3$)$_2$CO) avec NH$_3$, HCN et H$_2$O. Nous avons ensuite étudié la composition globale de résidus issus de l'irradiation et du réchauffement de glaces contenant H$_2$O, CH$_3$OH, et NH$_3$. Nous présentons une nouvelle approche pour interpréter les données Orbitrap de ces résidus. Les similarités trouvées avec des analyses de matière organique météoritique issues de la littérature laissent à penser qu'une partie de son évolution pourrait être semblable à celle de nos résidus. / Dust grains located in dense molecular clouds play a major role in the formation of complex organic molecules. These grains are covered by icy mantles containing primitive molecules. Dense molecular clouds can collapse and lead to the formation of planetary systems such as our own. During this evolution, the grains are exposed to energetic processes which transform the organic matter inside the ices. The grains are ultimately incorporated into small solar system bodies such as comets and asteroids, which can then contribute to the exogenous delivery of organic matter on Earth. In this context, this thesis focuses on simulating the chemical evolution of ices. To that end, ice analogues are formed by condensing a relevant gas mixture on a cold substrate. These interstellar ice analogues are irradiated with UV photons and/or heated in order to simulate astrophysical processes. An organic residue is formed which we characterized with Fourier transform infrared spectroscopy (FTIR) and very high resolution mass spectrometry (VHRMS) by Orbitrap.First, we performed mechanistic studies focused on the formation of aminoalcohols and hydroxynitriles from the warming of ices containing acetaldehyde (CH$_3$CHO) or acetone ((CH$_3$)$_2$CO) with NH$_3$, HCN and H$_2$O. Secondly, we studied the global composition of residues made from irradiation and warming of ices containing H$_2$O, CH$_3$OH, and NH$_3$. We present a new approach to interpret Orbitrap data of the residues. Similarities observed with meteoritic organic matter analyses found in the literature could mean that some of the evolution that led to meteoritic organic matter is shared with the evolution of our residues.

Page generated in 0.1164 seconds