• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 26
  • 11
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 104
  • 104
  • 66
  • 20
  • 19
  • 18
  • 15
  • 15
  • 15
  • 14
  • 12
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Dopad spotřeby domácností na životní prostředí / Envirnomental impact of household consumption

Mach, Radomír January 2021 (has links)
The main goal of this dissertation thesis is to quantify the environmental burden associated with household consumption in the Czech Republic. Emissions of three groups of gases were selected to express the burden on the environment, namely emissions causing climate change, acidification and the formation of photosmog. These emissions arise from the consumption of fuels in households, and they are usually referred to as direct household emissions. Or they arise in the production and distribution of goods and services, and they are usually referred to as indirect household emissions. Although indirect emissions come from combustion in energy production and other industrial processes and agricultural activities, not from households, they are a consequence of household demand for final products. Therefore, such emissions are considered to be a consequence of household consumption. The resulting emission values are given for the average household and households divided into expenditure deciles. Emissions increase with expenditure per household member in total consumption and in individual consumption groups across all deciles. In the case of climate change-related emissions, more than half come from heating (41%) and electricity (21%). For acidification, heating (31%) and food (24%) are the dominant...
102

Effects of Air vs. Air+Soil Heating During a Simulated Heat Wave on White Oak (Quercus alba) and Black Oak (Quercus velutina)

Lightle, Nicole E. 22 August 2013 (has links)
No description available.
103

Carbon Sequestration By Home Lawn Turfgrass Development and Maintenance in Diverse Climatic Regions of the United States

Selhorst, Adam Louis 25 July 2011 (has links)
No description available.
104

Análisis estocástico de datos climáticos como predictor para la gestión anticipada de sequías en recursos hídricos

Hernández Bedolla, Joel 04 April 2022 (has links)
[ES] La gestión de los recursos hídricos es de vital importancia para la comprensión de las sequias a largo plazo. En la actualidad, se presentan problemas debido a la disponibilidad y manejo del recurso hídrico. Además, el cambio climático afecta de manera negativa las variables climáticas y la disponibilidad del recurso hídrico. El tomar decisiones en base a información confiable y precisa conlleva un arduo trabajo y es necesario contar con diferentes herramientas que permitan llegar a la gestión de los recursos hídricos. La modelización de las variables climáticas es parte fundamental para determinar la disponibilidad del recurso hídrico. Las más importantes son la precipitación y temperatura o precipitación y evapotranspiración. Los modelos estocásticos se encuentran en un proceso de evolución que permiten reducir la escala de análisis. En esta investigación se ha abordado la modelación de variables climáticas con detalle diario. Se ha planteado una metodología para la generación de series sintéticas de precipitación y temperatura mediante modelización estocástica continua multivariada a escala diaria. Esta metodología también incorpora la corrección del sesgo para precipitación y temperatura de los escenarios de cambio climático con detalle diario. Los resultados de la presente tesis indican que los modelos estocásticos multivariados pueden representar las condiciones espaciales y temporales de las diferentes variables climáticas (precipitación y temperatura). Además, se plantea una metodología para la determinación de la evapotranspiración en función de los datos climáticos disponibles. Por otro lado, los modelos estocásticos multivariados permiten la corrección del sesgo con resultados diarios, mensuales y anuales más realistas que otros métodos de corrección de sesgo. Estos modelos climáticos son una herramienta para pronosticar eventos o escenarios futuros que permiten tomar mejores decisiones de manera anticipada. Estos modelos se programaron en el entorno de MatLab con el objetivo de aplicarlos a diferentes zonas de estudio de manera eficiente y automatizada. Los análisis realizados en la presente tesis se realizaron para la cuenca del Júcar con un buen desempeño para las condiciones de la cuenca. / [CA] La gestió dels recursos hídrics és de vital importància per a la comprensió de les sequeres a llarg termini. En l'actualitat, es presenten problemes a causa de la disponibilitat i maneig del recurs hídric. A més, el canvi climàtic afecta de manera negativa les variables climàtiques i la disponibilitat del recurs hídric. El prendre decisions sobre la base informació de confiança i precisa comporta un ardu treball i és necessari comptar amb diferents eines que permeten arribar a la gestió dels recursos hídrics. La modelització de les variables climàtiques és part fonamental per a determinar la disponibilitat del recurs hídric. Les més importants són la precipitació i temperatura o precipitació i evapotranspiració. Els models estocàstics es troben en un procés d'evolució que permet la incorporació de més detalls reduint l'escala d'anàlisi. En aquesta investigació s'ha abordat el modelatge de variables climàtiques amb detall diari. S'ha plantejat una metodologia per a la generació de sèries sintètiques de precipitació i temperatura mitjançant modelització estocàstica contínua multivariada a escala diària. Aquesta metodologia també incorpora la correcció del biaix per a precipitació i temperatura dels escenaris de canvi climàtic amb detall diari. Els resultats de la present tesi indiquen que els models estocàstics multivariats poden representar les condicions espacials i temporals de les diferents variables climàtiques (precipitació i temperatura). A més es planteja una metodologia per a la determinació de l'evapotranspiració en funció de les dades climàtiques disponibles. D'altra banda, els models estocàstics multivariats permeten la correcció del biaix amb resultats diaris, mensuals i anuals més realistes que altres mètodes de correcció de biaix. Aquests models climàtics són una eina per a pronosticar esdeveniments o escenaris futurs que permeten prendre millors decisions de manera anticipada. Aquests models es van programar a l'entorn de Matlab amb l'objectiu d'aplicar-los a diferents zones d'estudi de manera eficient i automatitzada. Les anàlisis realitzades en la present tesi es van realitzar per a la conca del Xúquer amb un bon acompliment per a les condicions de la conca. / [EN] Management of the water resources is important for understanding long-term droughts. Currently, there are problems due to the availability and management of water resources. Furthermore, climate change negatively affecting climate variables and the availability of water resources. Making decisions based on reliable and accurate information involves hard work and it is necessary to have different tools to achieve the management of water resources. The modeling of the climatic variables is a fundamental part to determine the availability of the water resource. The most important are precipitation and temperature or precipitation and evapotranspiration. Stochastic models are in a process of evolution that allows the incorporation of more details by reducing the scale of analysis. In this research, the modeling of climatic variables has been approached in daily detail. A methodology has been proposed for the generation of synthetic series of precipitation and temperature by means of multivariate continuous stochastic modeling on a daily scale. This methodology also incorporates the bias correction for precipitation and temperature of the climate change scenarios with daily detail. The results of this thesis indicate that multivariate stochastic models can represent the spatial and temporal conditions of the different climatic variables (precipitation and temperature). In addition, a methodology is proposed for the determination of evapotranspiration based on the available climatic data. On the other hand, multivariate stochastic models allow bias correction with more realistic daily, monthly and annual results than other bias correction methods. These climate models are a tool to forecast future events or scenarios that allow better decisions to be made in advance. These models were programmed in the MatLab software with the aim of applying them to different study areas in an efficient and automatically. The work in this thesis was carried out for the Júcar basin with a good performance for the conditions of the basin / Hernández Bedolla, J. (2022). Análisis estocástico de datos climáticos como predictor para la gestión anticipada de sequías en recursos hídricos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182095

Page generated in 0.046 seconds