• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the Elemental Measurement of Aerosols Using Microplasma Spectroscopy

Zheng, Lina January 2016 (has links)
No description available.
2

Analyse dünner Schichten mit der optischen Glimmentladungsspektroskopie

Klemm, Denis 21 August 2009 (has links) (PDF)
Die vorliegende Arbeit hat zum Ziel, ausgehend vom aktuellen Stand der Technik, die Möglichkeiten der optische Glimmentladungsspektroskopie (GD-OES) für Tiefenprofilanalysen dünner und dünnster Schichten (Schichtdicken = 1 bis 100 nm) zu bestimmen und geeignete instrumentelle und methodischen Modifikationen vorzuschlagen, um die Einsatzmöglichkeiten weiter auszubauen. Dies gilt gleichermaßen unter Berücksichtigung der Anforderungen des Einsatzes im Routinebetrieb (geringe Bruttoanalysezeit und Reproduzierbarkeit) sowie in der Erforschung und der Entwicklung dünner Schichten (geringe Nachweisgrenzen, hohe Flexibilität zum Beispiel bei den analysierbaren Elementen oder der Leitfähigkeit der Proben, geringe Matrixeffekte, etc.). Während jeder GD-OES Analyse finden drei räumlich und zeitlich getrennte Teilprozesse statt: (A) durch das Zerstäuben der Oberfläche wird die Probe in der lateralen Ausdehnung des Anodendurchmessers in die Tiefe abgetragen und in die atomaren Bestandteile zerlegt (Sputterprozess); (B) in das Plasmagebiet diffundierte Partikel reagieren mit dem Analysegas (i. d. R. Argon), dadurch werden die Atome (und Ionen) der Probe in angeregte Zustände versetzt, im nachfolgenden Relaxationsschritt emittieren diese unter anderem Photonen einer charakteristischen Wellenlänge, die (C) alle in einem Detektionssystem (Mono- bzw. Polychromator oder CCD-Spektrometer) in ihrer Intensität als Funktion der spektralen Wellenlänge und der Zeit erfasst werden. Ein Vorteil der Methode, die niedrige Analysendauer bedingt durch den vergleichsweise hohen Sputterabtrag bewirkt, dass die Analyse dünner Schichten innerhalb weniger – im Extremfall sogar nur innerhalb von Bruchteilen von – Sekunden stattfindet. Dies lässt die Herausforderungen für die Analyse dünner Schichten verstehen. Der unter anderem von den elektrischen Entladungsbedingungen abhängige Sputterprozess und die komplexen Reaktionen im Plasma müssen möglichst unmittelbar (< 50 ms) nach dem Zündvorgang in einen stabilen Zustand übergehen. Einerseits ist dies instrumentell durch eine Anpassung der Steuer- und Regelungstechnik (z. B. Wahl geeigneter Druckregelventile, -sensoren, etc.) gelungen. Andererseits beeinflussen die unvermeidlichen Kontaminationen [Wasser(filme) und Kohlenwasserstoffe], die in das Plasmagebiet diffundieren, negativ die Stabilität die Entladung. Die Hauptstrategie zur Unterdrückung dieser ‚Dreckeffekte’ sind erfolgreich verschiedene Wege der ex-situ (maximalmögliche Reduzierung der Leckrate, Einsatz von Hochvakuumbauteilen, Einführung von Richtlinien zur Vakuumhygiene) und in-situ Dekontamination (aktive Desorptionsminderung durch ein Vorsputtern mit Si) gewählt worden. Erst in der Summe aller apparativen Verbesserungen ist die Voraussetzung für die Verwendung der Glimmentladungsspektroskopie als zuverlässige Methode der Dünnschichtanalytik gegeben. Für die laborpraktischen Arbeiten wurde während der sukzessiven Optimierung des Vakuumsystems als Nebenergebnis ein anwenderfreundlicher Schnelltest zur Charakterisierung des Geräts für Kurz- und Langzeitvergleiche entwickelt. Dieser wertet die Abpumpkurven bzw. Druckanstiegskurven aus. In Abhängigkeit der Bedürfnisse und dem Aufwand des Anwenders lassen sich interessante Parameter, wie das effektive Saugvermögen, eine Zeitkonstante für die Gasabgabe oder die Leckrate IL bestimmen. Die Bandbreite der untersuchten Proben ist dabei ähnlich unterschiedlich, wie die Fragestellungen: leitfähige und nichtleitfähige Proben; Nachweis und Bestimmung von Matrixelementen, Legierungsbestandteilen oder Spuren; Einfach-, Mehrlagen- und Wechselschichten, Oberflächen- und Zwischenschichten; Adsorbate an Ober- und Grenzflächen, Schichtdickenhomogenität als Teil der Qualitätskontrolle, etc. Ein Teil dieser Schichtsysteme sind in dieser Arbeit ausführlicher diskutiert worden. Das Hartstoffschichtsystem TiN gehört mit den Schichtdicken von 0,5 bis 3 µm zwar eher zu den dicken Schichten, wobei besonders der oberflächennahe Bereich (< 100 nm) zuverlässig untersucht wurde (vgl. Kap. 4.1). Mit dem Nachweis und der Quantifizierung von in der Grenzfläche (100 bzw. 1000 nm unter der Oberfläche) zwischen den elektrochemisch (ECD-Cu) und physikalisch (PVD-Cu) abgeschiedenen Cu-Schichten versteckten Adsorbaten bietet GD-OES dem Schichthersteller oder dem Werkstoffwissenschaftler wichtige Informationen, um zum Beispiel gezielt Gefügeänderungen für die Erhöhung der Elektromigrationsresistenz einzustellen. Es wurde einerseits die prinzipielle Machbarkeit und andererseits auch die Grenzen der Methode im Vergleich mit TOF-SIMS gezeigt. Ein weiteres Schichtsystem aus der Mikroelektronik ist im anschließenden Kap. 4.3 Gegenstand der GD-OES Untersuchungen. Dabei wurde nicht nur die Schichtdicken von 10 bis 50 nm dünnen TaN-Barriereschichten, sondern auch die Homogenität der Schichtdicken über einen kompletten 6’’ Wafer bestimmt. Die nachzuweisenden Unterschiede liegen im Bereich von einigen Angström bis zu wenigen Nanometern. Die GD-OES Untersuchungen von TaN zeigen zu Beginn und in der Nähe der Grenzfläche zum Substrat ungewöhnliche Intensitätsverläufe von Ta und N. Erst in Kombination mit anderen oberflächenanalytischen Verfahren (XPS und AES) gelang die Interpretation der Messergebnisse. Aus der Summe aller Argumente wird die Hypothese formuliert, dass sich im Fall des Zerstäubungsprozesses von TaN wegen der großen Unterschiede in den Atommassen ein Vorzugssputtern (engl. preferential sputtering) herausbildet. Bei anderen sputternden Verfahren, z. B. SIMS, ist dieses Phänomen längst bekannt und wurde auch für die Glimmentladungsspektroskopie vermutet. Dies konnte bislang allerdings noch nie beobachtet werden. Rechnungen mit einem Simulationsprogramm für Kollisionsvorgänge aufgrund ballistischer Effekte (TRIDYN) stützen diese Hypothese. Begünstigt wurde die Beobachtung des Vorzugssputterns durch die sauberen Messbedingungen, durch die man in Lage versetzt war, Anfangspeaks klar von Kontaminationspeak zu unterscheiden. Das vorletzte Kapitel 4.4 beschäftigt sich mit Schichten im untersten Nanometerbereich (< 5 nm). Es zeigt sich, dass die wenige Nanometer dicken, natürlichen Oxidschichten deutlich besser analysierbar sind, wenn man die in der Arbeit vorgestellte in-situ Dekontamination durch ein Vorsputtern anwendet. Die GD-OES Untersuchungen an organischen Monolagenschichten in Kap. 4.5 sind Teil einer aktuellen wissenschaftlichen Diskussion innerhalb der weltweiten GD-OES Fachwelt. Die von KENICHI SHIMIZU vorgestellten Ergebnisse konnten am Beispiel von Thioharnstoff mit RF bestätigt und erstmals auch mit einer DC-Entladung gezeigt werden. Das Verfahren der GD-OES kann qualitativ die Existenz von monomolekularen Schichten im Subnanometerbereich nachweisen. Allerdings stellen die Ergebnisse von Substraten mit anderen Molekülen die Interpretation der Intensitäts-Zeitprofile in Frage. Ein anderer Interpretationsansatz wird als Hypothese formuliert, konnte jedoch noch nicht verifiziert werden. Mit den vorgestellten Optimierungen der Messtechnik lassen sich die Möglichkeiten der Anwendung der optischen Glimmentladungsspektroskopie für die Untersuchungen dünner und dünnster Schichten deutlich erweitern.
3

Wasserstoffeffekt und -analyse in der GDS - Anwendungen in der Werkstoffforschung / Hydrogen Effect and Analysis in GDS - Applications in Material Science

Hodoroaba, Vasile-Dan 24 December 2002 (has links) (PDF)
Im Rahmen der Dissertation wurden mit der Glimmentladungs-Spektrometrie Materialproben untersucht, die Wasserstoff enthalten. Auch sehr geringe Gehalte, z.B. im µg/g-Bereich, können nachgewiesen werden. GD-OES ist oft die einzige Methode, die für diese analytische Aufgabenstellung zur Verfügung steht. Die Anwesenheit von Wasserstoff im Glimmentladungsplasma bewirkt verschiedene Effekte: (i) die Signalintensitäten der meisten analytischen Emissionslinien und der des Trägergases werden beeinflußt, (ii) aus dem Wasserstoffkontinuum resultiert ein erhöhter spektraler Untergrund, (iii) der elektrische Widerstand des Plasmas steigt und (iv) die Abtragsraten sinken. Zum Verständnis dieser Effekte werden grundlegende Untersuchungen zu den Anregungs- und Ionisationsmechanismen im Glimmentladungsplasma durchgeführt. Da es keine geeigneten Materialien gibt, für die der Gehalt an Wasserstoff stabil sind, wurden die Wasserstoffeffekte und die Möglichkeit des Nachweises von Wasserstoff durch Zugabe wohl definierter Mengen gasförmigen Wasserstoffs in das GD-Plasma simuliert. Für die Änderungen (i) de Analyt- und Trägergassignale, (ii) des Entladungsstroms als abhängigen GD-Pa-rameter sowie (iii) des Wasserstofflinien- und Kontinuumspektrums wurde experimentell festgestellt, dass sie sehr ähnlich sind, unabhängig davon, ob der Wasserstoff aus der Probe kommt oder als Gas ins Plasma eingeleitet wird. Die Anwesenheit von Wasserstoff im GD Plasma beeinflußt die Form des Abtragskraters, durch den die Tiefenauflösung bestimmt wird. Dieser Effekt kann gezielt bei nichtleitenden Schichtmaterialien genutzt werden, um die Tiefenauflösung zu verbessern. Weiterhin können Empfindlichkeit und Nachweisgrenze von bestimmten Emissionslinien eines Analyten verbessert werden. Der Was-serstoff im elektrolytischen (Cd- oder Zn-)Schichtsystem kann die Materialeigenschaften ver-schlechtern. Beispielhaft sei die Versprödung genannt. Mit der GD-OES Tiefen-profilanalyse kann die Wirkung thermischer Nachbehandlungen, die in der Technik üblich sind, verfolgt werden. Es konnte an praktischen Beispielen gezeigt werden, dass für erfolgreiche Anwendungen der GD-OES für Dünnschichtanalytik die Reinheit (d.h. minimale H-Effekte) der GD-Quelle von entscheidender Bedeutung ist.
4

Analyse dünner Schichten mit der optischen Glimmentladungsspektroskopie

Klemm, Denis 12 June 2009 (has links)
Die vorliegende Arbeit hat zum Ziel, ausgehend vom aktuellen Stand der Technik, die Möglichkeiten der optische Glimmentladungsspektroskopie (GD-OES) für Tiefenprofilanalysen dünner und dünnster Schichten (Schichtdicken = 1 bis 100 nm) zu bestimmen und geeignete instrumentelle und methodischen Modifikationen vorzuschlagen, um die Einsatzmöglichkeiten weiter auszubauen. Dies gilt gleichermaßen unter Berücksichtigung der Anforderungen des Einsatzes im Routinebetrieb (geringe Bruttoanalysezeit und Reproduzierbarkeit) sowie in der Erforschung und der Entwicklung dünner Schichten (geringe Nachweisgrenzen, hohe Flexibilität zum Beispiel bei den analysierbaren Elementen oder der Leitfähigkeit der Proben, geringe Matrixeffekte, etc.). Während jeder GD-OES Analyse finden drei räumlich und zeitlich getrennte Teilprozesse statt: (A) durch das Zerstäuben der Oberfläche wird die Probe in der lateralen Ausdehnung des Anodendurchmessers in die Tiefe abgetragen und in die atomaren Bestandteile zerlegt (Sputterprozess); (B) in das Plasmagebiet diffundierte Partikel reagieren mit dem Analysegas (i. d. R. Argon), dadurch werden die Atome (und Ionen) der Probe in angeregte Zustände versetzt, im nachfolgenden Relaxationsschritt emittieren diese unter anderem Photonen einer charakteristischen Wellenlänge, die (C) alle in einem Detektionssystem (Mono- bzw. Polychromator oder CCD-Spektrometer) in ihrer Intensität als Funktion der spektralen Wellenlänge und der Zeit erfasst werden. Ein Vorteil der Methode, die niedrige Analysendauer bedingt durch den vergleichsweise hohen Sputterabtrag bewirkt, dass die Analyse dünner Schichten innerhalb weniger – im Extremfall sogar nur innerhalb von Bruchteilen von – Sekunden stattfindet. Dies lässt die Herausforderungen für die Analyse dünner Schichten verstehen. Der unter anderem von den elektrischen Entladungsbedingungen abhängige Sputterprozess und die komplexen Reaktionen im Plasma müssen möglichst unmittelbar (< 50 ms) nach dem Zündvorgang in einen stabilen Zustand übergehen. Einerseits ist dies instrumentell durch eine Anpassung der Steuer- und Regelungstechnik (z. B. Wahl geeigneter Druckregelventile, -sensoren, etc.) gelungen. Andererseits beeinflussen die unvermeidlichen Kontaminationen [Wasser(filme) und Kohlenwasserstoffe], die in das Plasmagebiet diffundieren, negativ die Stabilität die Entladung. Die Hauptstrategie zur Unterdrückung dieser ‚Dreckeffekte’ sind erfolgreich verschiedene Wege der ex-situ (maximalmögliche Reduzierung der Leckrate, Einsatz von Hochvakuumbauteilen, Einführung von Richtlinien zur Vakuumhygiene) und in-situ Dekontamination (aktive Desorptionsminderung durch ein Vorsputtern mit Si) gewählt worden. Erst in der Summe aller apparativen Verbesserungen ist die Voraussetzung für die Verwendung der Glimmentladungsspektroskopie als zuverlässige Methode der Dünnschichtanalytik gegeben. Für die laborpraktischen Arbeiten wurde während der sukzessiven Optimierung des Vakuumsystems als Nebenergebnis ein anwenderfreundlicher Schnelltest zur Charakterisierung des Geräts für Kurz- und Langzeitvergleiche entwickelt. Dieser wertet die Abpumpkurven bzw. Druckanstiegskurven aus. In Abhängigkeit der Bedürfnisse und dem Aufwand des Anwenders lassen sich interessante Parameter, wie das effektive Saugvermögen, eine Zeitkonstante für die Gasabgabe oder die Leckrate IL bestimmen. Die Bandbreite der untersuchten Proben ist dabei ähnlich unterschiedlich, wie die Fragestellungen: leitfähige und nichtleitfähige Proben; Nachweis und Bestimmung von Matrixelementen, Legierungsbestandteilen oder Spuren; Einfach-, Mehrlagen- und Wechselschichten, Oberflächen- und Zwischenschichten; Adsorbate an Ober- und Grenzflächen, Schichtdickenhomogenität als Teil der Qualitätskontrolle, etc. Ein Teil dieser Schichtsysteme sind in dieser Arbeit ausführlicher diskutiert worden. Das Hartstoffschichtsystem TiN gehört mit den Schichtdicken von 0,5 bis 3 µm zwar eher zu den dicken Schichten, wobei besonders der oberflächennahe Bereich (< 100 nm) zuverlässig untersucht wurde (vgl. Kap. 4.1). Mit dem Nachweis und der Quantifizierung von in der Grenzfläche (100 bzw. 1000 nm unter der Oberfläche) zwischen den elektrochemisch (ECD-Cu) und physikalisch (PVD-Cu) abgeschiedenen Cu-Schichten versteckten Adsorbaten bietet GD-OES dem Schichthersteller oder dem Werkstoffwissenschaftler wichtige Informationen, um zum Beispiel gezielt Gefügeänderungen für die Erhöhung der Elektromigrationsresistenz einzustellen. Es wurde einerseits die prinzipielle Machbarkeit und andererseits auch die Grenzen der Methode im Vergleich mit TOF-SIMS gezeigt. Ein weiteres Schichtsystem aus der Mikroelektronik ist im anschließenden Kap. 4.3 Gegenstand der GD-OES Untersuchungen. Dabei wurde nicht nur die Schichtdicken von 10 bis 50 nm dünnen TaN-Barriereschichten, sondern auch die Homogenität der Schichtdicken über einen kompletten 6’’ Wafer bestimmt. Die nachzuweisenden Unterschiede liegen im Bereich von einigen Angström bis zu wenigen Nanometern. Die GD-OES Untersuchungen von TaN zeigen zu Beginn und in der Nähe der Grenzfläche zum Substrat ungewöhnliche Intensitätsverläufe von Ta und N. Erst in Kombination mit anderen oberflächenanalytischen Verfahren (XPS und AES) gelang die Interpretation der Messergebnisse. Aus der Summe aller Argumente wird die Hypothese formuliert, dass sich im Fall des Zerstäubungsprozesses von TaN wegen der großen Unterschiede in den Atommassen ein Vorzugssputtern (engl. preferential sputtering) herausbildet. Bei anderen sputternden Verfahren, z. B. SIMS, ist dieses Phänomen längst bekannt und wurde auch für die Glimmentladungsspektroskopie vermutet. Dies konnte bislang allerdings noch nie beobachtet werden. Rechnungen mit einem Simulationsprogramm für Kollisionsvorgänge aufgrund ballistischer Effekte (TRIDYN) stützen diese Hypothese. Begünstigt wurde die Beobachtung des Vorzugssputterns durch die sauberen Messbedingungen, durch die man in Lage versetzt war, Anfangspeaks klar von Kontaminationspeak zu unterscheiden. Das vorletzte Kapitel 4.4 beschäftigt sich mit Schichten im untersten Nanometerbereich (< 5 nm). Es zeigt sich, dass die wenige Nanometer dicken, natürlichen Oxidschichten deutlich besser analysierbar sind, wenn man die in der Arbeit vorgestellte in-situ Dekontamination durch ein Vorsputtern anwendet. Die GD-OES Untersuchungen an organischen Monolagenschichten in Kap. 4.5 sind Teil einer aktuellen wissenschaftlichen Diskussion innerhalb der weltweiten GD-OES Fachwelt. Die von KENICHI SHIMIZU vorgestellten Ergebnisse konnten am Beispiel von Thioharnstoff mit RF bestätigt und erstmals auch mit einer DC-Entladung gezeigt werden. Das Verfahren der GD-OES kann qualitativ die Existenz von monomolekularen Schichten im Subnanometerbereich nachweisen. Allerdings stellen die Ergebnisse von Substraten mit anderen Molekülen die Interpretation der Intensitäts-Zeitprofile in Frage. Ein anderer Interpretationsansatz wird als Hypothese formuliert, konnte jedoch noch nicht verifiziert werden. Mit den vorgestellten Optimierungen der Messtechnik lassen sich die Möglichkeiten der Anwendung der optischen Glimmentladungsspektroskopie für die Untersuchungen dünner und dünnster Schichten deutlich erweitern.
5

Wasserstoffeffekt und -analyse in der GDS - Anwendungen in der Werkstoffforschung

Hodoroaba, Vasile-Dan 15 October 2002 (has links)
Im Rahmen der Dissertation wurden mit der Glimmentladungs-Spektrometrie Materialproben untersucht, die Wasserstoff enthalten. Auch sehr geringe Gehalte, z.B. im µg/g-Bereich, können nachgewiesen werden. GD-OES ist oft die einzige Methode, die für diese analytische Aufgabenstellung zur Verfügung steht. Die Anwesenheit von Wasserstoff im Glimmentladungsplasma bewirkt verschiedene Effekte: (i) die Signalintensitäten der meisten analytischen Emissionslinien und der des Trägergases werden beeinflußt, (ii) aus dem Wasserstoffkontinuum resultiert ein erhöhter spektraler Untergrund, (iii) der elektrische Widerstand des Plasmas steigt und (iv) die Abtragsraten sinken. Zum Verständnis dieser Effekte werden grundlegende Untersuchungen zu den Anregungs- und Ionisationsmechanismen im Glimmentladungsplasma durchgeführt. Da es keine geeigneten Materialien gibt, für die der Gehalt an Wasserstoff stabil sind, wurden die Wasserstoffeffekte und die Möglichkeit des Nachweises von Wasserstoff durch Zugabe wohl definierter Mengen gasförmigen Wasserstoffs in das GD-Plasma simuliert. Für die Änderungen (i) de Analyt- und Trägergassignale, (ii) des Entladungsstroms als abhängigen GD-Pa-rameter sowie (iii) des Wasserstofflinien- und Kontinuumspektrums wurde experimentell festgestellt, dass sie sehr ähnlich sind, unabhängig davon, ob der Wasserstoff aus der Probe kommt oder als Gas ins Plasma eingeleitet wird. Die Anwesenheit von Wasserstoff im GD Plasma beeinflußt die Form des Abtragskraters, durch den die Tiefenauflösung bestimmt wird. Dieser Effekt kann gezielt bei nichtleitenden Schichtmaterialien genutzt werden, um die Tiefenauflösung zu verbessern. Weiterhin können Empfindlichkeit und Nachweisgrenze von bestimmten Emissionslinien eines Analyten verbessert werden. Der Was-serstoff im elektrolytischen (Cd- oder Zn-)Schichtsystem kann die Materialeigenschaften ver-schlechtern. Beispielhaft sei die Versprödung genannt. Mit der GD-OES Tiefen-profilanalyse kann die Wirkung thermischer Nachbehandlungen, die in der Technik üblich sind, verfolgt werden. Es konnte an praktischen Beispielen gezeigt werden, dass für erfolgreiche Anwendungen der GD-OES für Dünnschichtanalytik die Reinheit (d.h. minimale H-Effekte) der GD-Quelle von entscheidender Bedeutung ist.

Page generated in 0.1118 seconds