• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 12
  • 3
  • 1
  • 1
  • Tagged with
  • 33
  • 11
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterization and expression patterns of five Winter Rye ??-1,3-endoglucanases and their role in cold acclimation

McCabe, Shauna January 2007 (has links)
Winter rye produces ice-modifying antifreeze proteins upon cold treatment. Two of these antifreeze proteins are members of the large, highly conserved, ??-1,3-endoglucanase family. This project was designed to identify glucanase genes that are expressed during cold acclimation, wounding, pathogen infection, drought or treatment with the phytohormones ethylene and MeJa. Additionally, a more detailed proteomic analysis was to be carried out to evaluate the glucanase content of the apoplast of cold-acclimated (CA) winter rye. Results of 2D SDS-PAGE analysis revealed that non-acclimated whole leaf protein extracts contain at least two ??-1,3-endoglucanses while CA whole leaf protein extracts contain at least three ??-1,3-endoglucanses. Subsequent 2D SDS-PAGE analysis was conducted on the apoplast extracts of NA and CA winter rye plants revealed the limitations of standard 1D SDS-PAGE. The 2-dimensional gel analysis revealed that there is a minimum of 25 proteins within the apoplast of CA winter rye, including at least 5 ??-1,3-endoglucanases. Genome walking was used to isolate cold-responsive glucanase genes. The five genes isolated were designated scGlu6, scGlu9, scGlu10, scGlu11 and scGlu12. The cis-element pattern within the promoter of each gene was evaluated using online databases of documented plant cis elements. As expected, all of the promoters contained elements associated with cold, biotic and abiotic stresses, light regulation, and development. The expression patterns predicted by the cis elements in each promoter were compared to the mRNA abundance produced by each gene as detected by semi-quantitative reverse transcriptase PCR. In most cases, the abundance of transcripts arising from each gene loosely corresponded to the expression pattern predicted by the cis elements the corresponding promoter. Transcripts of scGlu9, 10 and 11 were present in cold-treated tissues and are candidates for ??-1,3-endoglucanases with antifreeze activity. The results presented in this thesis provide additional insight into the apoplast proteome of CA winter rye plants as well as the complexity of the signals controlling the proteins that reside there. Although there are still a number of unresolved questions, this research opens new directions for future studies in the cold acclimation process in winter rye and specifically for the contribution of ?? -1,3-endoglucanses.
22

Role of two secreted proteins from Trichoderma virens in mycoparasitism and induction of plant resistance

Djonovic, Slavica 25 April 2007 (has links)
The soil-borne filamentous fungus Trichoderma virens is a biocontrol agent with a well known ability to produce antibiotics, parasitize pathogenic fungi and induce systemic resistance in plants. Here we report the identification, purification and characterization of an elicitor secreted by T. virens; a small protein designated Sm1 (small protein 1). Confrontation and disk assays demonstrated that Sm1 lacks toxic activity against plants and microbes. Native, purified Sm1 triggers production of reactive oxygen species in rice (Oryza sativa) and cotton (Gossypium hirsutum), and induces the expression of defense related genes both locally and systemically in cotton. Gene expression analysis revealed that SM1 is expressed throughout fungal development and is transcriptionally regulated by nutrient conditions and the presence of a host plant. When T. virens was co-cultured with cotton in an axenic hydroponic system, SM1 expression and secretion of the protein was significantly higher than when the fungus was grown alone. These results indicate that Sm1 is involved in plant-Trichoderma recognition and the induction of resistance by activation of plant defense mechanisms. Following the cloning of SM1, strains disrupted in or over-expressing SM1 were generated. Targeted gene disruption revealed that SM1 was not involved in fungal development. Expression of defense related genes in cotton and maize (Zea mays) was induced locally and systemically following colonization by T. virens in the hydroponic system. Low levels of expression of cotton or maize defense genes were found when seedlings were grown with a T. virens strain disrupted in SM1, ssupporting the Sm1-elicitor hypothesis. Additionally, unique proteins in T.virens-cotton/maize interaction were identified. Thus, the induction of defense responses in two agriculturally important crops appears to be microbially mediated. Functional analysis of a cell wall degrading enzyme, beta-1,6-glucananse (Tv-bgn3) from T. virens, demonstrated involvement of this enzyme indirectly in mycoparasitic activity of T. virens. Protein extracts from the strain disrupted in TV-BGN3 displayed reduced capability to inhibit growth of Pythium ultimum as compared to the wild-type. Additionally, protein extracts from the strains co-expressed with TV-BGN2 (beta-1,3-glucananse) from T. virens showed a significantly increased capability to inhibit growth of P. ultimum and Rhizoctonia solani hyphae.
23

Molecular cloning gene and nucleotide sequence of the gene encoding an endo-1,4-β-glucanase from Bacillus sp VLSH08 strain applying to biomass hydrolysis / Tách dòng và xác định trình tự gen endo-1,4-β – glucanase từ chủng vi khuẩn Bacillus sp VLSH08 ứng dụng để thủy phân sinh khối

Phan, Minh Thi Tuyet, Nguyen, Viet Quoc, Le, Hy Gia, Nguyen, Thoa Kim, Tran, Man Dinh 15 July 2013 (has links) (PDF)
Bacillus sp VLSH08 screened from sea wetland in Nam Dinh province produces an extracellular endo-1,4-beta-glucanase. According to the results of the classified Kit API 50/CHB as well as sequence of 1500 bp fragment coding for 16S rRNA gene of the Bacillus sp VLSH 08 strain showed that the taxonomical characteristics between the strain VLSH 08 and Bacillus amyloliquefaciene JN999857 are similar of 98%. Culture supernatant of this strain showed optimal cellulase activity at pH 5.8 and 60 Celsius degree and that was enhanced 2.03 times in the presence of 5 mM Co2+. Moreover, the gene encoding endo-1,4-beta-glucanase from this strain was cloned in Escherichia coli using pCR2.1 vector. The entire gene for the enzyme contained a 1500-bp single open reading frame encoding 500 amino acids, including a 29-amino acid signal peptide. The amino acid sequence of this enzyme is very close to that of an EG of Bacillus subtilis (EU022560.1) and an EG of Bacillus amyloliquefaciene (EU022559.1) which all belong to the cellulase family E2. A cocktail of enzyme containing this endo-1,4-beta-glucanase used for biomass hydrolysis indicated that the cellulose conversion attained to 72.76% cellulose after 48 hours. / Chủng vi khuẩn Bacillus sp VLSH08 được tuyển chọn từ tập hợp chủng vi khuẩn phân lập ở vùng ngập mặn tỉnh Nam Định có khả năng sinh tổng hợp enzyme endo-1,4-beta-glucanase ngoại bào. Kết quả phân loại chủng vi khuẩn Bacillus sp VLSH08 bằng Kit hóa sinh API 50/CHB cũng như trình tự gen mã hóa 16S rRNA cho thấy độ tương đồng của chủng Bacillus sp VLSH08 và chủng Bacillus amyloliquefaciene JN999857 đạt 98%. Dịch lên men của chủng được sử dụng làm nguồn enzyme thô để nghiên cứu hoạt độ tối ưu của enzyme ở pH 5,8 và nhiệt đô 60oC. Hoạt tính enzyme tăng 2,03 lần khi có mặt 5 mM ion Co2+. Đồng thời, gen mã hóa cho enzyme endo-1,4-betaglucanase cũng được tách dòng trong tế bào Escherichia coli sử dụng vector pCR 2.1. Gen mã hóa cho enzyme này có chiều dài 1500 bp, mã hóa cho 500 axit amin, bao gồm 29 axit amin của chuỗi peptid tín hiệu. So sánh cho thấy trình tự gen endo-1,4-beta-glucanase của chủng Bacillus sp VLSH08 có độ tương đồng cao với enzyme này của chủng Bacillus subtilis (EU022560.1) và của chủng Bacillus amyloliquefaciene (EU022559.1). Tất cả các enzyme nhóm này đều thuộc họ cellulase E2. Enzyme của chủng này cũng đã được phối trộn với các enzyme khác tạo thành cocktail để thủy phân sinh khối cho kết quả cellulose bị thủy phân 72,76% sau 48 giờ.
24

Role of two secreted proteins from Trichoderma virens in mycoparasitism and induction of plant resistance

Djonovic, Slavica 25 April 2007 (has links)
The soil-borne filamentous fungus Trichoderma virens is a biocontrol agent with a well known ability to produce antibiotics, parasitize pathogenic fungi and induce systemic resistance in plants. Here we report the identification, purification and characterization of an elicitor secreted by T. virens; a small protein designated Sm1 (small protein 1). Confrontation and disk assays demonstrated that Sm1 lacks toxic activity against plants and microbes. Native, purified Sm1 triggers production of reactive oxygen species in rice (Oryza sativa) and cotton (Gossypium hirsutum), and induces the expression of defense related genes both locally and systemically in cotton. Gene expression analysis revealed that SM1 is expressed throughout fungal development and is transcriptionally regulated by nutrient conditions and the presence of a host plant. When T. virens was co-cultured with cotton in an axenic hydroponic system, SM1 expression and secretion of the protein was significantly higher than when the fungus was grown alone. These results indicate that Sm1 is involved in plant-Trichoderma recognition and the induction of resistance by activation of plant defense mechanisms. Following the cloning of SM1, strains disrupted in or over-expressing SM1 were generated. Targeted gene disruption revealed that SM1 was not involved in fungal development. Expression of defense related genes in cotton and maize (Zea mays) was induced locally and systemically following colonization by T. virens in the hydroponic system. Low levels of expression of cotton or maize defense genes were found when seedlings were grown with a T. virens strain disrupted in SM1, ssupporting the Sm1-elicitor hypothesis. Additionally, unique proteins in T.virens-cotton/maize interaction were identified. Thus, the induction of defense responses in two agriculturally important crops appears to be microbially mediated. Functional analysis of a cell wall degrading enzyme, beta-1,6-glucananse (Tv-bgn3) from T. virens, demonstrated involvement of this enzyme indirectly in mycoparasitic activity of T. virens. Protein extracts from the strain disrupted in TV-BGN3 displayed reduced capability to inhibit growth of Pythium ultimum as compared to the wild-type. Additionally, protein extracts from the strains co-expressed with TV-BGN2 (beta-1,3-glucananse) from T. virens showed a significantly increased capability to inhibit growth of P. ultimum and Rhizoctonia solani hyphae.
25

Characterization and expression patterns of five Winter Rye β-1,3-endoglucanases and their role in cold acclimation

McCabe, Shauna January 2007 (has links)
Winter rye produces ice-modifying antifreeze proteins upon cold treatment. Two of these antifreeze proteins are members of the large, highly conserved, β-1,3-endoglucanase family. This project was designed to identify glucanase genes that are expressed during cold acclimation, wounding, pathogen infection, drought or treatment with the phytohormones ethylene and MeJa. Additionally, a more detailed proteomic analysis was to be carried out to evaluate the glucanase content of the apoplast of cold-acclimated (CA) winter rye. Results of 2D SDS-PAGE analysis revealed that non-acclimated whole leaf protein extracts contain at least two β-1,3-endoglucanses while CA whole leaf protein extracts contain at least three β-1,3-endoglucanses. Subsequent 2D SDS-PAGE analysis was conducted on the apoplast extracts of NA and CA winter rye plants revealed the limitations of standard 1D SDS-PAGE. The 2-dimensional gel analysis revealed that there is a minimum of 25 proteins within the apoplast of CA winter rye, including at least 5 β-1,3-endoglucanases. Genome walking was used to isolate cold-responsive glucanase genes. The five genes isolated were designated scGlu6, scGlu9, scGlu10, scGlu11 and scGlu12. The cis-element pattern within the promoter of each gene was evaluated using online databases of documented plant cis elements. As expected, all of the promoters contained elements associated with cold, biotic and abiotic stresses, light regulation, and development. The expression patterns predicted by the cis elements in each promoter were compared to the mRNA abundance produced by each gene as detected by semi-quantitative reverse transcriptase PCR. In most cases, the abundance of transcripts arising from each gene loosely corresponded to the expression pattern predicted by the cis elements the corresponding promoter. Transcripts of scGlu9, 10 and 11 were present in cold-treated tissues and are candidates for β-1,3-endoglucanases with antifreeze activity. The results presented in this thesis provide additional insight into the apoplast proteome of CA winter rye plants as well as the complexity of the signals controlling the proteins that reside there. Although there are still a number of unresolved questions, this research opens new directions for future studies in the cold acclimation process in winter rye and specifically for the contribution of β -1,3-endoglucanses.
26

Investigation Of Cytocidal Effect Of K5 Type Yeast Killer Protein On Sensitive Microbial Cells

Sertkaya, Abdullah 01 September 2005 (has links) (PDF)
Some yeasts secrete polypeptide toxins, which are lethal to other sensitive yeast cells, gram-positive pathogenic bacteria and pathogenic fungi. Therefore these are designated as killer toxins. Killer toxins are suggested as potent antimicrobial agents especially for the protection of fermentation process against contaminating yeasts, biological control of undesirable yeasts in the preservation of foods. Moreover they are promising antimicrobial agents in the medical field / due to immune system suppressing diseases like AIDS, there is an increase in the incidence of fungal diseases and current antimycotics have low selectivity and severe side effects. In this study our aim was to explain the cytocidal effect and enzymatic properties of K5 type yeast killer protein, which is secreted by Pichia anomala NCYC 434 cells, and known to have a broad range of killing spectrum. Competitive inhibition of the toxin with cell wall polysaccharides showed that primary binding site of toxin is &amp / #946 / -1,3-glucans of sensitive cells. Toxin showed exo-&amp / #946 / -1,3-glucanase activity which causes loss of cell wall rigidity leading cell death. Km and Vmax were found to be 0,3 mg/ml and 372,3 &micro / mol/min/mg for laminarin hydrolysis. The toxin exerted its cytocidal effect after 2 h contact with the target cells. Toxin production was found to be dependent on &amp / #946 / -1,3-glucan content of the media. Toxin activity was completely inhibited by Hg+2 ,while several metal ions and DTT increased the activity to different extends. Our findings revealed the characteristics of K5 type killer toxin which will help for its possible uses in near future.
27

Molecular cloning gene and nucleotide sequence of the gene encoding an endo-1,4-β-glucanase from Bacillus sp VLSH08 strain applying to biomass hydrolysis: Research article

Phan, Minh Thi Tuyet, Nguyen, Viet Quoc, Le, Hy Gia, Nguyen, Thoa Kim, Tran, Man Dinh 15 July 2013 (has links)
Bacillus sp VLSH08 screened from sea wetland in Nam Dinh province produces an extracellular endo-1,4-beta-glucanase. According to the results of the classified Kit API 50/CHB as well as sequence of 1500 bp fragment coding for 16S rRNA gene of the Bacillus sp VLSH 08 strain showed that the taxonomical characteristics between the strain VLSH 08 and Bacillus amyloliquefaciene JN999857 are similar of 98%. Culture supernatant of this strain showed optimal cellulase activity at pH 5.8 and 60 Celsius degree and that was enhanced 2.03 times in the presence of 5 mM Co2+. Moreover, the gene encoding endo-1,4-beta-glucanase from this strain was cloned in Escherichia coli using pCR2.1 vector. The entire gene for the enzyme contained a 1500-bp single open reading frame encoding 500 amino acids, including a 29-amino acid signal peptide. The amino acid sequence of this enzyme is very close to that of an EG of Bacillus subtilis (EU022560.1) and an EG of Bacillus amyloliquefaciene (EU022559.1) which all belong to the cellulase family E2. A cocktail of enzyme containing this endo-1,4-beta-glucanase used for biomass hydrolysis indicated that the cellulose conversion attained to 72.76% cellulose after 48 hours. / Chủng vi khuẩn Bacillus sp VLSH08 được tuyển chọn từ tập hợp chủng vi khuẩn phân lập ở vùng ngập mặn tỉnh Nam Định có khả năng sinh tổng hợp enzyme endo-1,4-beta-glucanase ngoại bào. Kết quả phân loại chủng vi khuẩn Bacillus sp VLSH08 bằng Kit hóa sinh API 50/CHB cũng như trình tự gen mã hóa 16S rRNA cho thấy độ tương đồng của chủng Bacillus sp VLSH08 và chủng Bacillus amyloliquefaciene JN999857 đạt 98%. Dịch lên men của chủng được sử dụng làm nguồn enzyme thô để nghiên cứu hoạt độ tối ưu của enzyme ở pH 5,8 và nhiệt đô 60oC. Hoạt tính enzyme tăng 2,03 lần khi có mặt 5 mM ion Co2+. Đồng thời, gen mã hóa cho enzyme endo-1,4-betaglucanase cũng được tách dòng trong tế bào Escherichia coli sử dụng vector pCR 2.1. Gen mã hóa cho enzyme này có chiều dài 1500 bp, mã hóa cho 500 axit amin, bao gồm 29 axit amin của chuỗi peptid tín hiệu. So sánh cho thấy trình tự gen endo-1,4-beta-glucanase của chủng Bacillus sp VLSH08 có độ tương đồng cao với enzyme này của chủng Bacillus subtilis (EU022560.1) và của chủng Bacillus amyloliquefaciene (EU022559.1). Tất cả các enzyme nhóm này đều thuộc họ cellulase E2. Enzyme của chủng này cũng đã được phối trộn với các enzyme khác tạo thành cocktail để thủy phân sinh khối cho kết quả cellulose bị thủy phân 72,76% sau 48 giờ.
28

Eficiência de indutores no manejo integrado de Meloidogyne spp. e Pratylenchus zeae em cana-de-açúcar

GUIMARÃES, Lílian Margarete Paes 27 February 2007 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-20T12:45:11Z No. of bitstreams: 1 Lilian Margarete Paes Guimaraes.pdf: 603330 bytes, checksum: b3b0fa1dea1a523d8a31a3f1c86a9715 (MD5) / Made available in DSpace on 2017-03-20T12:45:11Z (GMT). No. of bitstreams: 1 Lilian Margarete Paes Guimaraes.pdf: 603330 bytes, checksum: b3b0fa1dea1a523d8a31a3f1c86a9715 (MD5) Previous issue date: 2007-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Sugarcane (Saccharum spp.) production in Northeastern Brazil is low when compared to other producing regions in the country. Among the main diseases in the fields those caused by nematodes are pointed out due to high incidence and costs. Under this point of view, four experiments were carried out for more economic, efficient and environmental sound control alternatives. The first experiment evaluated methyl jasmonate, potassium silicate and Ecolife 40® efficiency, in association or not with systemic nematicide, for integrated nematode management in sugarcane. The experiment was carried out under a split plot in completely randomized block design in a nematode naturally infested area. At planting it was evaluated nematode densities in soil; and 3, 6, and 12 months later in soil and roots. Shoots number and productive and industrial variables were evaluated at 3 and 12 months, respectively. There was significant reduction on Meloidogyne spp. density in soil in plots with inducer in association or not with nematicide, and significant correlation between root-knot nematodes and Pratylenchuszeae. Other nematodes in field were not affected by inducers or nematicide. All productive and industrial variables were not affected also, except shoot and stalk numbers, significantly higher than the control in plots with Ecolife 40® and any inducer, respectively. In the second experiment it was evaluated under greenhouse methyl jasmonate and potassiumsilicate effect on M. incognita parasitism in sugarcane variety RB863129 and the peroxidase and β-1,3-glucanase activity elicited. The effect of Methyl jasmonate and potassium silicate did not affect shoot biomass. Methyl jasmonate and potassium silicate significantly decreased eggs number per gram of roots. Seven days after application, both inducers affected β-glucanase activity in inoculated plants and, at 14 and 21 days, inducerspromoted significant variations in peroxidase e β-1,3-glucanase levels, although, inversely to peroxidase, β-1,3-glucanase activity did not differ between inoculated and non inoculated plants. The third experiment evaluated under greenhouse the effect of methyl jasmonate and potassium silicate, in different applications, on sugarcane development under P. zeae naturally infested soil. Experimental design was completely randomized with 10 treatments and five replicates, using the nematicide carbofuran and untreated plants as the controls. Inducers did not affect (P>0.05) height and biomass of the plants neither P. zeae density in soil and root, 100 days after transplanting, differing from nematicide which reduced (P≤0.05) nematode density in soil and root. The fourth experiment evaluated methyl jasmonate and potassium silicate effect on M. incognita parasitism in two sugarcane varieties RB867515 and RB92579, under greenhouse. Inducers effect on nematodes depended on sugarcane variety. Methyl jasmonate and potassium silicate did not affect shoot biomass in RB867515. Methyl jasmonate significantly decreased M. incognita eggs in RB867515, and potassium silicate in RB867515 and RB92579, although bothsignificantly decreased eggs number per gram of roots in RB867515. / A produção de cana-de-açúcar (Saccharum spp.) no Nordeste do Brasil é baixa quando comparada a outras regiões produtoras no país. As fitonematoses se destacam entre as principais doenças, devido à alta incidência e aos elevados custos para o controle. Dessa forma quatro experimentos foram conduzidos buscando alternativas mais eficientes, econômicas e de menor impacto ambiental. O primeiro experimento avaliou a eficiência do metil jasmonato, silicato de potássio e Ecolife 40® aplicados isoladamente ou em associações com nematicida sistêmico em cana-de-açúcar variedade RB863129, em condições de campo. No solo, houve diminuição significativa da densidade populacional de Meloidogyne spp. nas parcelas que receberam indutores isoladamente ou em associações com nematicida, ocorrendo correlação significativa entre as densidades populacionais do parasito com Pratylenchus zeae. Os demais fitonematóides detectados não foram afetadospelos tratamentos, como também não foram todas as variáveis produtivas e industriais avaliadas, exceto o número de perfilhos e de colmos, significativamente maior do que a testemunha nas plantas com Ecolife 40® e com qualquer indutor, respectivamente. O segundo estudo avaliou o efeito de metil jasmonato e silicato de potássio sobre o parasitismo de M. incognita na variedade RB863129 de cana-de-açúcar e a atividade enzimática da peroxidase e β-1,3-glucanase elicitada, em condições de casa de vegetação. Metil jasmonato diminuiu significativamente o número de ovos por grama de raiz, mas não afetou à biomassa da parte aérea da planta. Sete dias após a aplicação, os dois indutores afetaram a atividade de β-glucanase na plantas parasitadas e, aos 14 e 21 dias, promoveram variações significativas nos níveis de peroxidase e β-1,3-glucanase, muito embora, ao contrário da peroxidase, a atividade da β-1,3-glucanase não tenha diferido entre plantasinoculadas e não inoculadas. No terceiro trabalho avaliou-se o efeito de metil jasmonato e silicato de potássio, em diferentes aplicações sobre a densidade populacional de P. zeae em solo naturalmente infestado cultivado com cana-de-açúcar e o desenvolvimento da cultura, em condições de casa de vegetação. Os indutores não afetaram (P>0,05) a altura e biomassa das plantas, nem a densidade populacional de P. zeae no solo e na raiz, 100 dias após o transplantio, diferindo do nematicida que reduziu (P≤0,05) o nível populacional do nematóide no solo e raiz. O quarto estudo avaliou o efeito de metil jasmonato e silicato de potássio sobre o parasitismo de M. incognita em duas variedades de cana-de-açúcar RB867515 e RB92579 em condições de casa de vegetação. O efeito dos indutores sobre o nematóide dependeu da variedade de cana-de-açúcar estudada. Metil jasmonato e silicato de potássio não afetaram à biomassa da parte aérea da variedade RB867515. Metiljasmonato diminuiu significativamente o número de ovos de M. incognita por planta em RB867515, e o silicato de potássio em RB867515 e RB92579, ambos reduziram significativamente o número de ovos por grama de raiz em RB867515.
29

Functional studies of a membrane-anchored cellulase from poplar

Jonsson Rudsander, Ulla January 2007 (has links)
Cellulose in particular and wood in general are valuable biomaterials for humanity, and cellulose is now also in the spotlight as a starting material for the production of biofuel. Understanding the processes of wood formation and cellulose biosynthesis could therefore be rewarding, and genomics and proteomics approaches have been initiated to learn more about wood biology. For example, the genome of the tree Populus trichocarpa has been completed during 2006. A single-gene approach then has to follow, to elucidate specific patterns and enzymatic details. This thesis depicts how a gene encoding a membrane-anchored cellulase was isolated from Populus tremula x tremuloides Mich, how the corresponding protein was expressed in heterologous hosts, purified and characterized by substrate analysis using different techniques. The in vivo function and modularity of the membrane-anchored cellulase was also addressed using overexpression and complementation analysis in Arabidopsis thaliana. Among 9 genes found in the Populus EST database, encoding enzymes from glycosyl hydrolase family 9, two were expressed in the cambial tissue, and the membrane-anchored cellulase, PttCel9A1, was the most abundant transcript. PttCel9A1 was expressed in Pichia pastoris, and purified by affinity chromatography and ion exchange chromatography. The low yield of recombinant protein from shake flask experiments was improved by scaling up in the fermentor. PttCel9A1 was however highly heterogenous, both mannosylated and phosphorylated, which made the protein unsuitable for crystallization experiments and 3D X-ray structure determination. Instead, a homology model using a well-characterized, homologous bacterial enzyme was built. From the homology model, interesting point mutations in the active site cleft that would highlight the functional differences of the two proteins could be identified. The real-time cleavage patterns of cello-oligosaccharides by mutant bacterial enzymes, the wildtype bacterial enzyme and PttCel9A1 were studied by 1H NMR spectroscopy, and compared with results from HPAEC-PAD analysis. The inverting stereochemistry for the hydrolysis reaction of the membrane-anchored poplar cellulase was also determined by 1H NMR spectroscopy, and it was concluded that transglycosylation in vivo is not a possible scenario. The preferred in vitro polymeric substrates for PttCel9A1 were shown to be long, low-substituted cellulose derivatives, and the endo-1,4--glucanase activity was not extended to branched or mixed linkage substrates to detectable levels. This result indicates an in vivo function in the hydrolysis of “amorphous” regions of cellulose, either during polymerization or crystallization of cellulose. In addition, overexpressing PttCel9A1 in A. thaliana, demonstrated a correlation with decreased crystallinity of cellulose. The significance of the different putative modules of PttCel9A1 was investigated by the construction of hybrid proteins, that were introduced into a knock-out mutant of A. thaliana, and the potential complementation of the phenotype was examined. A type B plant cellulase catalytic domain could not substitute for a type A plant cellulase catalytic domain, although localization and interaction motifs were added to the N- and C-terminus. / QC 20100802
30

Engineering carbohydrate-active enzymes: specificity and activity remodeled

Addington, Trevor 26 January 2009 (has links)
To understand and modify the secondary cell walls of plants the project group Enzyme Discovery in Hybrid Aspen for Fiber Engineering (EDEN) was founded composed of nine laboratories with funding from the European Commission. The main target of EDEN´s research is to genetically engineer fiber structure in order to produce transgenic trees with modified properties for the pulp and paper industries. In this target framework, the Populus tremula x tremuloides xyloglucan endotransglycosylase (PttXET16A) was selected for in-depth study of its transglycosylase activity catalyzing cleavage and reconnection of xyloglucan molecules, which is proposed to be involved in secondary cell wall morphogenesis. The creation of a family 16 carbohydrate active enzyme -glucanase/XET hybrids were attempted in order to design a chimeric enzyme with one or more of the following altered properties: specificity, activity, and or stability. The two enzymes, Bacillus licheniformis 1,3-1,4--glucanase and Populus tremula x tremuloides xyloglucan endotransglycosylase, are members of the same enzymatic family and have highly homologous 3-dimensional structures. However, the enzymes exhibit different activities, one a hydrolase the other a transferase; different specificities, one accepts only linear glcosydic substrates while the other branched substrates; and different stabilities. Hybrid enzyme construction represented an investigational challenge in order to understand what physical characteristics of both enzymes attribute to the specific pattern of activity and specificity observed.Removal of the 1,3-1,4--glucanase major loop resulted in a folded protein which still maintained some β-glucan hydrolase activity. However, no xyloglucan endotransglycosylase-like activity or specificity was observed. Next, point mutations of the β-sheets forming the enzymatic binding site cleft were mutated to resemble PttXET16A residues. The final chimeric protein neither exhibited XET nor β-glucanase activities. Structural analysis by X-ray crystallography revealed a major unexpected structural rearrangement providing a clear insight for further enzyme engineering. / Amb la finalitat d'entendre i modificar la paret cel·lular secundària de les plantes, es va fundar el grup Enzyme Discovery in Hibrid Aspen for Fibern Engineering (EDEN) composat per nou laboratoris amb la finançament de la Comissió Europea. El principal objectiu de la recerca del grup EDEN és enginyar genèticament l'estructura de fibres per tal de produir arbres transgènics amb propietats modificades per les indústries de la polpa i el paper.En el marc d'aquest projecte, es va seleccionar el Populus tremula x tremuloides xiloglucà endotransglicosilasa (PttXET16A) per estudiar en profunditat la seva activitat transglicosilasa catalitzant el trencament i la reconnexió de molècules de xiloglucà, el qual sembla estar involucrat en la morfogènesi de la paret cel·lular secundària. D'aquesta manera, s'intentà crear una família 16 d'híbrids de l'enzim actiu amb carbohidrats -glucanasa/XET per tal de dissenyar un enzim quimèric amb una o més de les propietats següents alterades: especificitat, activitat i/o estabilitat.Els dos enzims, Bacillus licheniformis 1,3-1,4--glucanasa i Populus tremula x tremuloides xiloglucà endotransglicosilasa, són membres de la mateixa família enzimàtica i tenen una gran homologia en les seves estructures en 3-dimensions. Tot i així, aquests enzims presenten diferents activitats, un presenta activitat hidrolasa i l'altre, transferasa; diferents especificitats, un accepta només substrats glicosílics lineals mentre l'altre, substrats ramificats; i diferents estabilitats. La construcció d'un enzim híbrid representa un repte en la investigació amb la finalitat d'entendre quines característiques físiques dels dos enzims s'atribueixen al model específic de l'activitat i especificitat observada.L'extracció del llaç més gran de l'1,3-1,4--glucanasa va resultar en l'obtenció d'una proteïna plegada que encara manté certa activitat hidrolasa del -glucà. Tot i això, no s'observà activitat o especificitat similar a la xiloglucà endotransglicosilasa. A partir d'aquí, es realitzaren mutacions puntuals a diferents punts de les fulles  que formen l'escletxa del lloc d'unió de l'enzim per assemblar-se als residus del PttXET16A. La proteïna quimèrica final tampoc presentava activitat XET ni -glucanasa. L'anàlisi de l'estructura per cristal·lografia de raigs X revelà una major reorganització estructural de l'esperada proveint el nou enzim d'un clar espai intern que obra moltes més portes a l'enginyeria de l'enzim. / Con la finalidad de entender y modificar la pared celular secundaria de las plantas, se fundó el grupo Enzyme Discovery in Hibrid Aspen for Fibern Engineering (EDEN) compuesto por nueve laboratorios con la financiación de la Comisión Europea. El principal objetivo de la búsqueda del grupo EDEN es ingeniar genéticamente la estructura de fibras para producir árboles transgénicos con propiedades modificadas para las industrias de la pulpa y el papel. En el marco de este proyecto, se seleccionó el Populus tremula x tremuloides xiloglucán endotransglicosilasa (PttXET16A) para estudiar en profundidad su actividad transglicosilasa catalizando la rotura y la reconnexión de moléculas de xiloglucán, el cual parece estar involucrado en la morfogénesis de la pared celular secundaria. De esta forma, se intentó crear una familia 16 de híbridos de la enzima activa con carbohidratos -glucanasa/XET con la finalidad de diseñar una enzima quimérica con una o más de las propiedades siguientes alteradas: especificidad, actividad y/o estabilidad. Las dos enzimas, Bacillus licheniformis 1,3-1,4--glucanasa y Populus tremula x tremuloides xiloglucà endotransglicosilasa, son miembros de la misma familia enzimática y tienen una gran homología en sus estructuras en 3-dimensiones. Aún así, estas enzimas presentan diferentes actividades, una tiene actividad hidrolasa y la otra, transferasa; diferentes especificidades, una acepta sólo sustratos glicosílicos lineales mientras la otra, sustratos ramificados; y diferentes estabilidades. La construcción de una enzima híbrida representa un reto dentro de la investigación con la finalidad de entender qué características físicas de las dos enzimas se atribuyen al modelo específico de la actividad y especificidad observada. La extracción del lazo más grande de la 1,3-1,4--glucanasa resultó en la obtención de una proteína plegada que todavía mantiene cierta actividad hidrolasa del -glucán. Aún así, no se observó actividad o especificidad similar a la xiloglucán endotransglicosilasa. A partir de este punto, se realizaron mutaciones puntuales a diferentes puntos de las hojas  que forman la brecha del lugar de unión de la enzima por asemejarse a los residuos del PttXET16A. La proteína quimérica final tampoco presentaba actividad XET ni -glucanasa. El análisis de la estructura por cristalografía de rayos X reveló una mayor reorganización estructural de la esperada proveyendo la nueva enzima de un claro espacio interno que obre muchas más puertas a la ingeniería de la enzima.

Page generated in 0.0424 seconds