• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gluconic acid oxidizing system of Pseudomonas aeruginosa

Ramakrishnan, Thekkepat January 1955 (has links)
Earlier work has shown that Pseudomonas aeruginosa 9027 can oxidize glucose to carbon dioxide and water by way of gluconic, 2-ketogluconic and pyruvic acids. However, it has been found that closely related organisms can phosphorylate gluconic acid. The object of the present work was to isolate the gluconate oxidizing enzyme, to solubilize it, purify it, determine the co-factor requirements and ascertain whether or not any energy was gained or lost by the system during the reaction. Cells harvested from a gluconic acid medium were disintegrated in a 10 kc. Raytheon sonic oscillator. The enzyme which was still attached to the cell particles was solubilized with sodium glycocholate and remaining particles were removed by the addition of 0.30 saturation ammonium sulphate. Nucleoproteins were then removed by the addition of protamine sulphate. Further fractionation with acid and alkaline ammonium sulphate purified the enzyme 200 fold. Finally the enzyme was absorbed on tricalcium phosphate and eluted with M/5 phosphate buffer of pH 7.0. The pH optimum of the purified enzyme was found to be 5.6 while in the whole cells the maximum activity was at pH 7.0. A hydrogen acceptor was necessary for linking the system to atmospheric oxygen; 2,6-dichlorophenolindophenol and pyocyanine were found to be the most efficient acceptors. Ferricyanide poisoned the system, while brilliant cresyl blue was inactive as a hydrogen acceptor. Reaction with methylene blue was slow. Diphosphopyridine nucleotide, triphosphopyridine nucleotide, flavin mononucleotide, flavin adenine dinucleotide, cytochrome c, adenosine diphosphate and adenosine triphosphate had no influence on the enzyme activity. Sodium fluoride, 2,4-dinitrophenol, azide, iodoacetate, arsenite or 8-hydroxyquinoline did not act as inhibitors. Cyanide, glutathione and cysteine activated the enzyme slightly. The enzyme is specific for gluconic acid. Glucose, glucuronic acid, 2-ketogluconic acid, pyruvic acid, saccharic acid, ribonic acid, arabonic acid, fructose, mannose, ribose-5-phosphate, glucose-6-phosphate or 6-phosphogluconic acid were not oxidized by the enzyme. No carbon dioxide was evolved during the oxidation of gluconic acid by the enzyme. The product on chromatographic analysis, was found to be 2-ketogluconic acid. The enzyme was routinely stored at -10°C in M/10 tris buffer, pH 7.0. Under these conditions it was stable for several weeks. At 4°C, under the same conditions, the enzyme may be kept for three to four days without any appreciable loss of activity. When dialyzed against distilled water, there was a gradual loss of activity after eight to ten hours, accompanied by precipitation. Dialysis against neutral buffers for as long as 24 hours in the cold produced no loss in activity. Instead of sodium glycocholate, "Cutscum" can be used, for solubilizing the enzyme. Purification can also be effected from the sonicate through the use of the ultracentrifuge. The supernatant left after one hour of centrifugation at 105,000 x G oxidized gluconic acid in the presence of pyocyanine and showed two peaks in the electrophoretic apparatus, one of which is believed to be due to protamine sulphate. Though no phosphorylation of the substrate was demonstrable as evidenced by the lack of activation by ATP and the lack of inhibition by fluoride, the problem was further investigated in the sonic extracts. No increase in acid was found either aerobically or anaerobically in P. aeruginosa as tested by the method of Colowick and Kalckar. Moreover, sonic extracts failed to reduce TPN in the presence of gluconate and an excess of phosphogluconic dehydrogenase isolated from Brewer's yeast. In contrast to these data, it was found that by either of the last two mentioned criteria, P. fluorescens A. 312 did phosphorylate gluconate. p. fluores-cens thus possesses an additional phosphorylated pathway for dissimilating glucose and this is absent in P. aeruginosa. No energy was found to be produced in the initial stages of glucose oxidation. The system could not be coupled to the "zwischenferment" reaction of glucose which requires ATP. Chromatographic analysis failed to show any ATP formed during the oxidation of gluconic acid. The significance of these findings in the light of the glucose metabolism by P. aeruginosa is discussed. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
2

Thermochemical studies of d-glucose, d-mannose, and d-gluconic acid and their modifications

LeRoy, Royce Harold. January 1933 (has links)
Thesis (Ph. D.)--University of Nebraska, 1933. / Bibliography: p. 32.
3

The production of oxalic, citric, and gluconic acids from plantation molasses

Ruth, John A. 01 January 1934 (has links)
This research was undertaken for the purpose of developing a process for producing citric and gluconic acids from plantation molasses. There is an evident need for such a process. At the present time, these acids are being produced by processes in which refined sugar is the principal raw material. If molasses could be used in place of refined sugar, the cost of raw materials would be reduced by approximately ninety percent. In addition, a waste product would be utilized. The scope of this problem is very broad. Its solution will involve the solving of many problems of widely varying natures. In this work it is the aim of the writer to survey the entire field, touching lightly on each of its various phases, rather than to attempt to work out the complete solution of any particular phase of the problem. Since this is the initial research such a course of action seems prudent. It would be useless to solve one phase of the problem without making certain that some other one does not present a serious barrier to the process as a whole. Also, it is only by doing this survey work that the relative importance of the various problems can be determined. In order that he may be acquainted with the economic aspects of the problem, the reader should have some knowledge of the uses of the acids to be produced. The uses of citric acid are well known and need not be discussed here. Gluconic acid, however, has only recently become of any commercial importance. A brief discussion of some of its possible uses will be in order. Many of the uses of gluconic acid are based on its ability to form inner anhydrides, known as lactones, which will regenerate gluconic acid when dissolved in water. The rate of formation of the acid from the lactone may be controlled within certain limits by varying the conditions of temperature and concentration. This property makes it desirable to use gluconic lactone in fruit powders for jelly making, in baking powders, in the manufacture of cell concrete and insulating brick, and, in short, wherever the slow and controllable formation of an acid is wanted. Gluconates are used in the preparation of homogeneous pastes such as dentifrices. Calcium and magnesium gluconates are quite satisfactory polishing agents. The gluconate is the most satisfactory calcium salt for use in medicine, being assimilable, practically tasteless, and non-irritating to tissues. It may be administered by the mouth or by subcutaneous injection. A colloidal suspension of hydrated aluminum oxide in gluconic acid finds use in tanning, furnishing a white, flexible, and durable leather, which is not leached out or stiffened by prolonged treatment with hot water.
4

The oxidation of glucose in aqueous solution by oxygen

Olson, Richard E. 01 January 1967 (has links)
No description available.
5

Estudo da interação do alumínio com o ácido glucônico / Study of the interaction of aluminium with gluconic acid

Pauletto, Mareni Maria 19 August 2005 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Parenteral solutions are used for patients with complexes diseases, for pre-term infants and surgical patients. The administration of solutions contaminated by aluminium for a long period of time can lead to severe intoxication, with consequent bone and neurological diseases. Considering that, the FDA (Food and Drug Administration) has been investigating the consume of aluminium through solutions for parenteral nutrition and established a maximum limit of 5 μg Al/kg weight of the patient per day. It has been found elevated aluminium concentration in solutions of phosphates (28 000 μg/L) and calcium gluconate (12 000 μg/L). In this work, the interaction between aluminium and the anion gluconate was evaluated by means of spectrophotometry, ion-exchange experiments and potentiometric titration. By spectrophotometry, the reaction with Morin allowed to calculate the amount of aluminium that reacted with the anion gluconate in solutions of calcium and sodium gluconate and also gluconic acid. Ion-exchange experiments included other ligands with affinity for aluminium and a resin in the Al3+-form. The ability of the ligands citrate, oxalate, EDTA, NTA, and gluconate in the form of gluconic acid, calcium gluconate, and sodium gluconate to withdraw it from the Al3+-form resin was evaluated at different concentrations and periods of time. Aluminium quantification was carried out by atomic absorption spectrometry either by graphite furnace or flame. The results showed that the exchange was bigger in the calcium gluconate solution followed by sodium gluconate and gluconic acid. Comparing with the other complexing agents, gluconic acid showed the lower extraction ability. These results are in agreement with the stability constants found in the literature for the aluminium complexes with these ligands. Potentiometric titration was carried out to evaluate the stability constants of the possible complexes build between aluminium and the ion gluconate in aqueous solution. The results showed that the predominant species in solution have a proportion metalligand 1:1. Stability constants obtained showed a good agreement with the stability constants of the complexes collected from the literature. / Soluções parenterais são utilizadas em pacientes que sofrem de doenças complexas, em pacientes pediátricos e cirúrgicos. A administração de soluções parenterais contaminadas por alumínio por períodos longos de tempo, pode fazer com que os pacientes sofram intoxicação, causando enfermidades graves, como problemas cerebrais e doenças nos ossos. Em vista disto, a FDA (Food and Drug Administration) tem investigado o consumo de alumínio através de soluções de nutrição parenteral, e estabeleceu um limite máximo de 5 μg Al/kg de peso do paciente por dia. Foi constatado em vários trabalhos publicados, que altas concentrações de alumínio foram encontradas em aditivos utilizados em NP. Entre os aditivos, destacam-se os de pequenos volumes, tais como as soluções de fosfato (28 000 μg/L de Al) e soluções de gluconato de cálcio (12 000 μg/L de Al). Neste trabalho, investigou-se a interação do gluconato de cálcio, que compõe as soluções de nutrição parenteral disponíveis comercialmente, com alumínio, avaliando a forma como o alumínio se encontra associado ao ânion gluconato. O método espectrofotométrico foi usado como um método direto para a quantificação do alumínio. Este método permitiu através da reação entre o alumínio e o Morin, obter a concentração de alumínio que reagiu com o ácido glucônico, gluconato de cálcio e gluconato de sódio em soluções destas substâncias em diferentes concentrações. Não somente o método espectrofotométrico mas também o estudo da extração de alumínio de uma resina catiônica na forma Al3+ pelas soluções de ácido glucônico, gluconato de cálcio e gluconato de sódio foi realizado a fim de comprovar que realmente o íon gluconato atua como um ligante para o alumínio. E esta interação é crescente na seguinte ordem: gluconato de cálcio > gluconato de sódio > ácido glucônico. Para fins comparativos realizou-se a extração do alumínio da resina catiônica na forma Al3+ por agentes complexantes. Os agentes complexantes analisados foram EDTA, NTA, ácido cítrico, ácido oxálico e ácido glucônico. Foi verificado que as soluções de EDTA, NTA, ácido cítrico e ácido oxálico extraíram maiores quantidades de alumínio do que a solução de ácido glucônico. Isto confirma os altos valores encontrados na literatura para as constantes de estabilidade desses complexantes com alumínio, ao passo que complexos de ácido glucônico com alumínio apresentam valores menores para as constantes de estabilidade. Para concluir o estudo de interação entre o ânion gluconato e o íon alumínio, foi utilizado o método potenciométrico para determinar as possíveis constantes de estabilidade dos complexos formados em solução aquosa. Os resultados obtidos confirmam a interação e a estabilidade dos complexos formados entre o alumínio e ânion gluconato. Neste experimento, acredita-se que as porcentagens de 100, 64,2 e 52% obtidas para o deslocamento sofrido nas curvas de titulação das soluções nas razões molares 1:1, 2:1 e 3:1, L:M, indicam que houve predominância da formação de complexos 1:1. Já com excesso do ligante, ou seja para a razão molar estudada de 10:1, L:M, a proporção encontrada para as espécies formadas é de 2:1. Assim, as espécies 1:1 e 2:1 possivelmente podem estar presentes nas soluções comerciais de gluconato de cálcio, comprovando assim a alta contaminação por alumínio que existe nestas soluções.
6

Corrosion Inhibition of Al Alloy with CaSiO3 /Gluconate Based Pigments in Aggressive Gluconic Acid/Saline Media

Zou, Yongkun 03 June 2016 (has links)
No description available.
7

Enzimas microbianas na conversão da sacarose em frutose e ácido glicônico usando reatores descontínuo-alimentado e contínuo com membrana / Conversion of sucrose into fructose and gluconic acid by microbial enzymes using fed-batch and membrane continuous reactors

Taraboulsi Junior, Fadi Antoine 26 July 2010 (has links)
A sacarose é uma matéria-prima em franca expansão de produção no Brasil, seu maior produtor e exportador. Essa molécula pode ser convertida, através de um processo multienzimático, em produtos de maior valor agregado: frutose e ácido glicônico, os quais são importados pelo país, e amplamente utilizados em indústrias químicas, de produção de fármacos e setores alimentícios. Neste estudo, avaliou-se a hidrólise da sacarose pela invertase assim como a conversão da glicose em ácido glicônico, pela ação da glicose oxidase, ambas em processo descontínuo-alimentado. A solução de substrato (64g/L-sacarose; 32g/L-glicose) foi adicionada segundo as seguintes leis: constante, linear crescente, linear decrescente, exponencial crescente e exponencial decrescente. No caso da glicose, foi necessária a utilização de enzima auxiliar, a catalase, para degradar a água oxigenada formada durante a conversão da glicose. Mediante os resultados dos testes com os dois substratos, realizou-se teste de conversão direta da sacarose em frutose e ácido glicônico, utilizando-se invertase, glicose oxidase e catalase em regime descontínuo-alimentado, com alimentação linear decrescente (melhor resultado para ambos os substratos). No procedimento contínuo, alvo principal do trabalho, utilizou-se reator com membrana, da marca MILLIPORE ®, integrando em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida foram, a princípio, fixados de acordo com os valores otimizados no reator descontínuo-alimentado com o emprego simultâneo das enzimas. / Sucrose is a commodity largely produced in Brazil and one of the most used and commercialized product in food industry. It can be converted through a multienzyme process in fructose and gluconic acid, which have commercial values higher than sucrose. Both products are imported by Brazil, being largely employed in the chemical, food and pharmaceutical industry. This work dealt with the hydrolysis of sucrose by invertase into fructose and glucose, and the oxidation of glucose to gluconic acid by glucose oxidase and catalase. Catalase was added in order to decompose the hydrogen peroxide an inhibitor of glucose oxidase formed as by-product of the oxidation. Two processes were employed. Fed-batch in which the hydrolysis and oxidation reactions were carried out separately by adding invertase followed by glucose oxidase and catalase was conducted by adding the solution of substrate according to a constant, increasing linear, decreasing linear, increasing exponential or decreasing exponential mode. The best fed-batch performance was attained through the decreasing linear addition of sucrose (64g/L) and glucose (32g/L). Setting this kind of addition and using all enzymes simultaneously, the direct conversion of sucrose to fructose and gluconic acid occurred at a yield of 72%. The continuous process was carried out in a cell-type membrane reactor (membrane cut off = 100 kDa), in which the sucrose conversion was made by using all enzymes simultaneously, leading to a final yield of about 76%
8

Enzimas microbianas na conversão da sacarose em frutose e ácido glicônico usando reatores descontínuo-alimentado e contínuo com membrana / Conversion of sucrose into fructose and gluconic acid by microbial enzymes using fed-batch and membrane continuous reactors

Fadi Antoine Taraboulsi Junior 26 July 2010 (has links)
A sacarose é uma matéria-prima em franca expansão de produção no Brasil, seu maior produtor e exportador. Essa molécula pode ser convertida, através de um processo multienzimático, em produtos de maior valor agregado: frutose e ácido glicônico, os quais são importados pelo país, e amplamente utilizados em indústrias químicas, de produção de fármacos e setores alimentícios. Neste estudo, avaliou-se a hidrólise da sacarose pela invertase assim como a conversão da glicose em ácido glicônico, pela ação da glicose oxidase, ambas em processo descontínuo-alimentado. A solução de substrato (64g/L-sacarose; 32g/L-glicose) foi adicionada segundo as seguintes leis: constante, linear crescente, linear decrescente, exponencial crescente e exponencial decrescente. No caso da glicose, foi necessária a utilização de enzima auxiliar, a catalase, para degradar a água oxigenada formada durante a conversão da glicose. Mediante os resultados dos testes com os dois substratos, realizou-se teste de conversão direta da sacarose em frutose e ácido glicônico, utilizando-se invertase, glicose oxidase e catalase em regime descontínuo-alimentado, com alimentação linear decrescente (melhor resultado para ambos os substratos). No procedimento contínuo, alvo principal do trabalho, utilizou-se reator com membrana, da marca MILLIPORE ®, integrando em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida foram, a princípio, fixados de acordo com os valores otimizados no reator descontínuo-alimentado com o emprego simultâneo das enzimas. / Sucrose is a commodity largely produced in Brazil and one of the most used and commercialized product in food industry. It can be converted through a multienzyme process in fructose and gluconic acid, which have commercial values higher than sucrose. Both products are imported by Brazil, being largely employed in the chemical, food and pharmaceutical industry. This work dealt with the hydrolysis of sucrose by invertase into fructose and glucose, and the oxidation of glucose to gluconic acid by glucose oxidase and catalase. Catalase was added in order to decompose the hydrogen peroxide an inhibitor of glucose oxidase formed as by-product of the oxidation. Two processes were employed. Fed-batch in which the hydrolysis and oxidation reactions were carried out separately by adding invertase followed by glucose oxidase and catalase was conducted by adding the solution of substrate according to a constant, increasing linear, decreasing linear, increasing exponential or decreasing exponential mode. The best fed-batch performance was attained through the decreasing linear addition of sucrose (64g/L) and glucose (32g/L). Setting this kind of addition and using all enzymes simultaneously, the direct conversion of sucrose to fructose and gluconic acid occurred at a yield of 72%. The continuous process was carried out in a cell-type membrane reactor (membrane cut off = 100 kDa), in which the sucrose conversion was made by using all enzymes simultaneously, leading to a final yield of about 76%
9

Conversão multienzimática da sacarose em frutose e ácido glicônico usando reatores descontínuo e contínuo / Multienzyme Conversion of sucrose into fructose and gluconic acid in Discontinuous and Continuous Reactors

Silva, Aline Ramos da 12 February 2010 (has links)
A sacarose é uma matéria-prima, cuja produção é considerada ecologicamente correta, sendo o Brasil seu maior produtor e exportador. O dissacarídeo pode ser convertido, através de um processo multienzimático, em substâncias de maior valor agregado: frutose e ácido glicônico, as quais são importadas pelo Brasil, tendo amplo uso nos setores químico, farmacêutico e alimentício. A conversão foi feita através da ação da invertase, glicose oxidase e catalase, utilizando os reatores descontínuo e contínuo. No procedimento utilizando reator descontínuo, o tempo de residência é igual para reagentes, produtos e catalisador. Neste caso as enzimas foram adicionadas seqüencialmente, em um primeiro momento, e na segunda etapa foram adicionadas simultaneamente. Os parâmetros de partida, a saber, concentração inicial de sacarose, pH, temperatura e atividades enzimáticas, foram testados em diferentes quantidades no intuito de encontrar a mistura inicial mais eficiente na conversão do substrato. No procedimento contínuo, utilizou-se reator com membrana, da marca MILLIPORE®, que permite integrar em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida, neste reator, foram fixados de acordo com os valores otimizados no reator descontínuo com o emprego simultâneo das enzimas. / Sucrose is produced in large amount in Brazil, being a worldwide commercialized commodity. However, it can be converted into more valuable products such as fructose and gluconic acid, both used largely in the chemical, pharmaceutical and food industry. Conversion occurred through the action of invertase, glucose oxidase and catalase, using the discontinuous and continuous reactors. In the batch reactor, the residence time is equal to reactants, products and catalyst. In this case, enzymes were added sequentially, at first, and in the second step were added simultaneously. Boot parameters, initial sucrose concentration, pH, temperature and enzyme activities were tested in different amounts in order to find the most efficient initial mixture to the conversion of the substrate. In continuous process, we used the membrane reactor, MILLIPORE®, which allows for one-step catalytic conversion, the separation / concentration of the product and recovery of the biocatalyst. The temperature was controlled by circulation of water, coupled with a peristaltic pump (to control the feed flow of the substrate) and a pressurization system. The reactor was operated with ultrafiltration membrane (molecular cutoff = 100 kDa) and was kept under constant agitation. The initial parameters in this reactor were set according to the values optimized in the batch reactor with the simultaneous use of enzymes.
10

Conversão multienzimática da sacarose em frutose e ácido glicônico usando reatores descontínuo e contínuo / Multienzyme Conversion of sucrose into fructose and gluconic acid in Discontinuous and Continuous Reactors

Aline Ramos da Silva 12 February 2010 (has links)
A sacarose é uma matéria-prima, cuja produção é considerada ecologicamente correta, sendo o Brasil seu maior produtor e exportador. O dissacarídeo pode ser convertido, através de um processo multienzimático, em substâncias de maior valor agregado: frutose e ácido glicônico, as quais são importadas pelo Brasil, tendo amplo uso nos setores químico, farmacêutico e alimentício. A conversão foi feita através da ação da invertase, glicose oxidase e catalase, utilizando os reatores descontínuo e contínuo. No procedimento utilizando reator descontínuo, o tempo de residência é igual para reagentes, produtos e catalisador. Neste caso as enzimas foram adicionadas seqüencialmente, em um primeiro momento, e na segunda etapa foram adicionadas simultaneamente. Os parâmetros de partida, a saber, concentração inicial de sacarose, pH, temperatura e atividades enzimáticas, foram testados em diferentes quantidades no intuito de encontrar a mistura inicial mais eficiente na conversão do substrato. No procedimento contínuo, utilizou-se reator com membrana, da marca MILLIPORE®, que permite integrar em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida, neste reator, foram fixados de acordo com os valores otimizados no reator descontínuo com o emprego simultâneo das enzimas. / Sucrose is produced in large amount in Brazil, being a worldwide commercialized commodity. However, it can be converted into more valuable products such as fructose and gluconic acid, both used largely in the chemical, pharmaceutical and food industry. Conversion occurred through the action of invertase, glucose oxidase and catalase, using the discontinuous and continuous reactors. In the batch reactor, the residence time is equal to reactants, products and catalyst. In this case, enzymes were added sequentially, at first, and in the second step were added simultaneously. Boot parameters, initial sucrose concentration, pH, temperature and enzyme activities were tested in different amounts in order to find the most efficient initial mixture to the conversion of the substrate. In continuous process, we used the membrane reactor, MILLIPORE®, which allows for one-step catalytic conversion, the separation / concentration of the product and recovery of the biocatalyst. The temperature was controlled by circulation of water, coupled with a peristaltic pump (to control the feed flow of the substrate) and a pressurization system. The reactor was operated with ultrafiltration membrane (molecular cutoff = 100 kDa) and was kept under constant agitation. The initial parameters in this reactor were set according to the values optimized in the batch reactor with the simultaneous use of enzymes.

Page generated in 0.4349 seconds