• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imobilização da inulinase de Klyveromyces marxianus var. bulgaricus ATCC 16045: caracterização e produção de açúcar invertido em biorreator

Paula, Fabricio Coutinho de [UNESP] 23 March 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:23Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-03-23Bitstream added on 2014-06-13T19:35:26Z : No. of bitstreams: 1 paula_fc_me_rcla.pdf: 631356 bytes, checksum: 37d2f07653025c4a4c953cfbd2fb8073 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O interesse pela inulinase iniciou-se com a descoberta de sua habilidade de hidrolisar inulina, um polimero vegetal, em fmtose praticamente pura. A frutose é considerada uma alternativa segura como adoçante em relação à sacarose, sendo largamente utilizada na indústria de alimentos. As inulinases são geralmente tennoestáveis e comercialmente viáveis para aplicações industriais. Entretanto, uma produção contínua de frutose requer a utilização de uma inulinase imobilizada. Neste trabalho, o caldo fermentado, isento de células, de Kluyveromyces marxianus var. bulgaricus foi imobilizado em vários suportes: carvão ativado, diatomito, casca de ovo, amberlite, sílica de porosidade controlada e gelatina. A mais alta taxa de imobilização foi obtida em gelatina (82,60%). Os métodos restantes avaliados não foram bem sucedidos, seja pela ausência de ligação protéica ou perda de atividade provocados pelo processo de imobilização. O pH ótimo da inulinase imobilizada foi o mesmo da enzima livre (3,5). As temperaturas ótimas foram 55 °C para a enzima livre e 60 °C para a inulinase imobilizada. O gráfico de Arrhenius apresentou-se linear e as energias de ativação foram 56,20 KJ/mol.°K (enzima livre) e 20,27 KJ/mol.°K (enzima imobilizada). Os parâmetros cinéticos foram calculados pelo gráfico de LineweaverBurk e os valores de Km e Vmax foram de 20,68 mg/mL e 37,73 UA/mg para a enzima livre; e 50,05 mg/mL e 31,64 UA!mg para a enzima imobilizada, respectivamente. A estabilidade operacional da inulinase imobilizada foi avaliada em reator tubular de leito fixo, durante 782 horas, apresentando 58,12% de atividade enzimática residual. Foi realizada uma cromatografia de camada delgada para uma análise qualitativa dos produtos da reação. / The interest for inulinase began when it was discovered its ability to hydrolyse inulin, a vegetal polymer, in fructose practically pure. Fructose is considered as a safe altemative sweetener to sucrose, widely used in food industries. The inulinases are usually thermostable and cornmercially available for industrial applications. However, a continuous production of fructose requires the use of an immobilized inulinase. In this work, the crude enzyme broth free celis from Kluyveromyces marxianus var. bulgaricus was imrnobilized on various supports: activated carbon, diatomite, hen egg shell, amberlite, porous silica and gelatin. The highest irnrnobilization yield was obtained in gelatin (82,60%). The remaining methods screened were not successful either because no protem binding occurred or irnmobilization process resulted in activity loss. The optimum pH of immobilized inulinase remained the sarne as that of free enzyme (3,5). The optimum temperatures were 55 °C for free enzyrne and 60 °C for the imrnobilized inulmase. The Arrhenius plot were linear and activation energies were 56,20 KJ/mol.°K (Free enzyme) and 20,27 KJ/rnol.°K (Immobilized enzyme). The kinetic parameters were calculated from Lineweaver-Burk plots and the values of Km and Vmax were 20,68 mg/mL and 37,73 UA/rng for free inulinase; and 50,05 rng/rnL and 31,64 UA/rng for immobilized enzyme, respectively. The operational stability of the immobilized inulinase was studied in continuous fixed bed colurnn reactor for 782 hours with 58,12% of residual activity. Thin layer chromatography was used for qualitative analysis of the reaction products.
2

Produção de fruto-oligossacarídeos e açúcar Invertido utilizando enzimas imobilizadas

Lorenzoni, André Soibelmann Glock January 2014 (has links)
Fruto-oligossacarídeos (FOS) são fibras prebióticas com poder adoçante considerável, sendo um produto de alto valor para a indústria de alimentos. Açúcar invertido é o produto da hidrólise da sacarose possuindo maior poder adoçante, menor susceptibilidade à cristalização e maior higroscopicidade com relação à sacarose, sendo de grande interesse industrial. Ambos produtos podem ser produzidos por reações enzimáticas, utilizando β-frutosiltransferase e β- frutofuranosidase respectivamente, no entanto processos enzimáticos costumam ser caros devido ao alto custo e baixa estabilidade de enzimas. Esses fatores podem ser contornados com a imobilização da enzima, permitindo a reutilização e por vezes aumentando a estabilidade. No presente trabalho a enzima β-frutosiltransferase proveniente de um extrato comercial de Aspergillus aculeatus (Viscozyme L) foi parcialmente purificada, com resina de troca iônica, imobilizada covalentemente em esferas de quitosana e utilizada na produção de FOS. O processo de purificação aumentou a atividade específica em 6 vezes. A estabilidade do biocatalisador imobilizado foi avaliada em 50 bateladas para produção de FOS, foi observado cerca de 55 % de rendimento em cada batelada, sem perda de atividade detectada após as utilizações. Após esse experimento foi testada a utilização das esferas em reatores contínuos com leito fixo e fluidizado, com rendimentos de 59 % e 54 % respectivamente. A produção de açúcar invertido foi feita utilizando a enzima Maxinvert L (β-frutofuranosidase de Saccharomyces cerevisiae) que foi imobilizada, da mesma forma, em esferas de quitosana e sua utilização foi testada em reatores de leito fixo e fluidizado com rendimentos de 98 % e 94 % respectivamente. Os reatores de leito fixo possuem potencial para estudos envolvendo aplicações industriais tanto para produção de FOS quanto para produção de Açúcar Invertido. / Fructooligosaccharides (FOS) are prebiotic fibre with sweetening power, being a highvalue product for the food industry. Invert sugar is the product of sucrose hydrolysis; it has a higher sweetening power, it is less susceptible to crystallization and has a higher hygroscopicity than regular sugar. Finding many uses in food industry processes. Both products can be obtained by enzymatic reactions using β-fructosyltransferase and β- fructofuranosidase, respectively. However, enzymatic processes are often costly because of high enzymatic cost and lack of operational stability. These drawbacks can be overcome by immobilization of enzyme, enabling reuses and usually increasing its stability. In the present work, β-fructofuranosidase from a commercial preparation from Aspergillus aculeatus (Viscozyme L) was partially purified, covalently immobilized on chitosan spheres and used for FOS production. Partial purification resulted in a 6-fold increase in specific activity. Operational stability of biocatalyst was evaluated along 50 batches, resulting in around 55 % yield on each batch and no loss of activity after batches. The immobilized biocatalyst was also used for FOS production in packed bed and fluidized bed reactors with yields of 59 % and 54 % respectively. Invert sugar production was carried out using Maxinvert L (β- fructofuranosidase from Saccharomyces cerevisiae) immobilized, by the same method, on chitosan spheres. Its application on packed bed and fluidized bed reactors was evaluated resulting in yields of 98 % and 94 % respectively. The packed bed reactors presented potential for further studies aiming industrial applications for FOS and Invert Sugar production.
3

Produção de fruto-oligossacarídeos e açúcar Invertido utilizando enzimas imobilizadas

Lorenzoni, André Soibelmann Glock January 2014 (has links)
Fruto-oligossacarídeos (FOS) são fibras prebióticas com poder adoçante considerável, sendo um produto de alto valor para a indústria de alimentos. Açúcar invertido é o produto da hidrólise da sacarose possuindo maior poder adoçante, menor susceptibilidade à cristalização e maior higroscopicidade com relação à sacarose, sendo de grande interesse industrial. Ambos produtos podem ser produzidos por reações enzimáticas, utilizando β-frutosiltransferase e β- frutofuranosidase respectivamente, no entanto processos enzimáticos costumam ser caros devido ao alto custo e baixa estabilidade de enzimas. Esses fatores podem ser contornados com a imobilização da enzima, permitindo a reutilização e por vezes aumentando a estabilidade. No presente trabalho a enzima β-frutosiltransferase proveniente de um extrato comercial de Aspergillus aculeatus (Viscozyme L) foi parcialmente purificada, com resina de troca iônica, imobilizada covalentemente em esferas de quitosana e utilizada na produção de FOS. O processo de purificação aumentou a atividade específica em 6 vezes. A estabilidade do biocatalisador imobilizado foi avaliada em 50 bateladas para produção de FOS, foi observado cerca de 55 % de rendimento em cada batelada, sem perda de atividade detectada após as utilizações. Após esse experimento foi testada a utilização das esferas em reatores contínuos com leito fixo e fluidizado, com rendimentos de 59 % e 54 % respectivamente. A produção de açúcar invertido foi feita utilizando a enzima Maxinvert L (β-frutofuranosidase de Saccharomyces cerevisiae) que foi imobilizada, da mesma forma, em esferas de quitosana e sua utilização foi testada em reatores de leito fixo e fluidizado com rendimentos de 98 % e 94 % respectivamente. Os reatores de leito fixo possuem potencial para estudos envolvendo aplicações industriais tanto para produção de FOS quanto para produção de Açúcar Invertido. / Fructooligosaccharides (FOS) are prebiotic fibre with sweetening power, being a highvalue product for the food industry. Invert sugar is the product of sucrose hydrolysis; it has a higher sweetening power, it is less susceptible to crystallization and has a higher hygroscopicity than regular sugar. Finding many uses in food industry processes. Both products can be obtained by enzymatic reactions using β-fructosyltransferase and β- fructofuranosidase, respectively. However, enzymatic processes are often costly because of high enzymatic cost and lack of operational stability. These drawbacks can be overcome by immobilization of enzyme, enabling reuses and usually increasing its stability. In the present work, β-fructofuranosidase from a commercial preparation from Aspergillus aculeatus (Viscozyme L) was partially purified, covalently immobilized on chitosan spheres and used for FOS production. Partial purification resulted in a 6-fold increase in specific activity. Operational stability of biocatalyst was evaluated along 50 batches, resulting in around 55 % yield on each batch and no loss of activity after batches. The immobilized biocatalyst was also used for FOS production in packed bed and fluidized bed reactors with yields of 59 % and 54 % respectively. Invert sugar production was carried out using Maxinvert L (β- fructofuranosidase from Saccharomyces cerevisiae) immobilized, by the same method, on chitosan spheres. Its application on packed bed and fluidized bed reactors was evaluated resulting in yields of 98 % and 94 % respectively. The packed bed reactors presented potential for further studies aiming industrial applications for FOS and Invert Sugar production.
4

Produção de fruto-oligossacarídeos e açúcar Invertido utilizando enzimas imobilizadas

Lorenzoni, André Soibelmann Glock January 2014 (has links)
Fruto-oligossacarídeos (FOS) são fibras prebióticas com poder adoçante considerável, sendo um produto de alto valor para a indústria de alimentos. Açúcar invertido é o produto da hidrólise da sacarose possuindo maior poder adoçante, menor susceptibilidade à cristalização e maior higroscopicidade com relação à sacarose, sendo de grande interesse industrial. Ambos produtos podem ser produzidos por reações enzimáticas, utilizando β-frutosiltransferase e β- frutofuranosidase respectivamente, no entanto processos enzimáticos costumam ser caros devido ao alto custo e baixa estabilidade de enzimas. Esses fatores podem ser contornados com a imobilização da enzima, permitindo a reutilização e por vezes aumentando a estabilidade. No presente trabalho a enzima β-frutosiltransferase proveniente de um extrato comercial de Aspergillus aculeatus (Viscozyme L) foi parcialmente purificada, com resina de troca iônica, imobilizada covalentemente em esferas de quitosana e utilizada na produção de FOS. O processo de purificação aumentou a atividade específica em 6 vezes. A estabilidade do biocatalisador imobilizado foi avaliada em 50 bateladas para produção de FOS, foi observado cerca de 55 % de rendimento em cada batelada, sem perda de atividade detectada após as utilizações. Após esse experimento foi testada a utilização das esferas em reatores contínuos com leito fixo e fluidizado, com rendimentos de 59 % e 54 % respectivamente. A produção de açúcar invertido foi feita utilizando a enzima Maxinvert L (β-frutofuranosidase de Saccharomyces cerevisiae) que foi imobilizada, da mesma forma, em esferas de quitosana e sua utilização foi testada em reatores de leito fixo e fluidizado com rendimentos de 98 % e 94 % respectivamente. Os reatores de leito fixo possuem potencial para estudos envolvendo aplicações industriais tanto para produção de FOS quanto para produção de Açúcar Invertido. / Fructooligosaccharides (FOS) are prebiotic fibre with sweetening power, being a highvalue product for the food industry. Invert sugar is the product of sucrose hydrolysis; it has a higher sweetening power, it is less susceptible to crystallization and has a higher hygroscopicity than regular sugar. Finding many uses in food industry processes. Both products can be obtained by enzymatic reactions using β-fructosyltransferase and β- fructofuranosidase, respectively. However, enzymatic processes are often costly because of high enzymatic cost and lack of operational stability. These drawbacks can be overcome by immobilization of enzyme, enabling reuses and usually increasing its stability. In the present work, β-fructofuranosidase from a commercial preparation from Aspergillus aculeatus (Viscozyme L) was partially purified, covalently immobilized on chitosan spheres and used for FOS production. Partial purification resulted in a 6-fold increase in specific activity. Operational stability of biocatalyst was evaluated along 50 batches, resulting in around 55 % yield on each batch and no loss of activity after batches. The immobilized biocatalyst was also used for FOS production in packed bed and fluidized bed reactors with yields of 59 % and 54 % respectively. Invert sugar production was carried out using Maxinvert L (β- fructofuranosidase from Saccharomyces cerevisiae) immobilized, by the same method, on chitosan spheres. Its application on packed bed and fluidized bed reactors was evaluated resulting in yields of 98 % and 94 % respectively. The packed bed reactors presented potential for further studies aiming industrial applications for FOS and Invert Sugar production.
5

Conversão multienzimática da sacarose em frutose e ácido glicônico usando reatores descontínuo e contínuo / Multienzyme Conversion of sucrose into fructose and gluconic acid in Discontinuous and Continuous Reactors

Silva, Aline Ramos da 12 February 2010 (has links)
A sacarose é uma matéria-prima, cuja produção é considerada ecologicamente correta, sendo o Brasil seu maior produtor e exportador. O dissacarídeo pode ser convertido, através de um processo multienzimático, em substâncias de maior valor agregado: frutose e ácido glicônico, as quais são importadas pelo Brasil, tendo amplo uso nos setores químico, farmacêutico e alimentício. A conversão foi feita através da ação da invertase, glicose oxidase e catalase, utilizando os reatores descontínuo e contínuo. No procedimento utilizando reator descontínuo, o tempo de residência é igual para reagentes, produtos e catalisador. Neste caso as enzimas foram adicionadas seqüencialmente, em um primeiro momento, e na segunda etapa foram adicionadas simultaneamente. Os parâmetros de partida, a saber, concentração inicial de sacarose, pH, temperatura e atividades enzimáticas, foram testados em diferentes quantidades no intuito de encontrar a mistura inicial mais eficiente na conversão do substrato. No procedimento contínuo, utilizou-se reator com membrana, da marca MILLIPORE®, que permite integrar em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida, neste reator, foram fixados de acordo com os valores otimizados no reator descontínuo com o emprego simultâneo das enzimas. / Sucrose is produced in large amount in Brazil, being a worldwide commercialized commodity. However, it can be converted into more valuable products such as fructose and gluconic acid, both used largely in the chemical, pharmaceutical and food industry. Conversion occurred through the action of invertase, glucose oxidase and catalase, using the discontinuous and continuous reactors. In the batch reactor, the residence time is equal to reactants, products and catalyst. In this case, enzymes were added sequentially, at first, and in the second step were added simultaneously. Boot parameters, initial sucrose concentration, pH, temperature and enzyme activities were tested in different amounts in order to find the most efficient initial mixture to the conversion of the substrate. In continuous process, we used the membrane reactor, MILLIPORE®, which allows for one-step catalytic conversion, the separation / concentration of the product and recovery of the biocatalyst. The temperature was controlled by circulation of water, coupled with a peristaltic pump (to control the feed flow of the substrate) and a pressurization system. The reactor was operated with ultrafiltration membrane (molecular cutoff = 100 kDa) and was kept under constant agitation. The initial parameters in this reactor were set according to the values optimized in the batch reactor with the simultaneous use of enzymes.
6

Conversão multienzimática da sacarose em frutose e ácido glicônico usando reatores descontínuo e contínuo / Multienzyme Conversion of sucrose into fructose and gluconic acid in Discontinuous and Continuous Reactors

Aline Ramos da Silva 12 February 2010 (has links)
A sacarose é uma matéria-prima, cuja produção é considerada ecologicamente correta, sendo o Brasil seu maior produtor e exportador. O dissacarídeo pode ser convertido, através de um processo multienzimático, em substâncias de maior valor agregado: frutose e ácido glicônico, as quais são importadas pelo Brasil, tendo amplo uso nos setores químico, farmacêutico e alimentício. A conversão foi feita através da ação da invertase, glicose oxidase e catalase, utilizando os reatores descontínuo e contínuo. No procedimento utilizando reator descontínuo, o tempo de residência é igual para reagentes, produtos e catalisador. Neste caso as enzimas foram adicionadas seqüencialmente, em um primeiro momento, e na segunda etapa foram adicionadas simultaneamente. Os parâmetros de partida, a saber, concentração inicial de sacarose, pH, temperatura e atividades enzimáticas, foram testados em diferentes quantidades no intuito de encontrar a mistura inicial mais eficiente na conversão do substrato. No procedimento contínuo, utilizou-se reator com membrana, da marca MILLIPORE®, que permite integrar em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida, neste reator, foram fixados de acordo com os valores otimizados no reator descontínuo com o emprego simultâneo das enzimas. / Sucrose is produced in large amount in Brazil, being a worldwide commercialized commodity. However, it can be converted into more valuable products such as fructose and gluconic acid, both used largely in the chemical, pharmaceutical and food industry. Conversion occurred through the action of invertase, glucose oxidase and catalase, using the discontinuous and continuous reactors. In the batch reactor, the residence time is equal to reactants, products and catalyst. In this case, enzymes were added sequentially, at first, and in the second step were added simultaneously. Boot parameters, initial sucrose concentration, pH, temperature and enzyme activities were tested in different amounts in order to find the most efficient initial mixture to the conversion of the substrate. In continuous process, we used the membrane reactor, MILLIPORE®, which allows for one-step catalytic conversion, the separation / concentration of the product and recovery of the biocatalyst. The temperature was controlled by circulation of water, coupled with a peristaltic pump (to control the feed flow of the substrate) and a pressurization system. The reactor was operated with ultrafiltration membrane (molecular cutoff = 100 kDa) and was kept under constant agitation. The initial parameters in this reactor were set according to the values optimized in the batch reactor with the simultaneous use of enzymes.
7

Avaliação da atividade da invertase de Saccharomyces cerevisiae imobilizada em polianilina sobre o caldo de cana / Evaluation of the invertase activity of Saccharomyces cerevisiae immobilized in polyaniline on sugarcane

BARBOSA, Eduardo Fernandes 19 February 2010 (has links)
Made available in DSpace on 2014-07-29T15:16:29Z (GMT). No. of bitstreams: 1 Dissertacao_Eduardo_Fernandes_Barbosa.pdf: 661327 bytes, checksum: 816b815568b664e6a1393b1196e634ea (MD5) Previous issue date: 2010-02-19 / This work describes the immobilization of invertase on chemically synthesized polyaniline and activated with glutaraldehyde (PANIG) for production of invert syrup from sugarcane juice. Free invertase activity present in crude extract (E.B.) obtained from cells of Saccharomyces cerevisiae, was characterized for an evaluation of interferents present in the extract on enzyme activity (optimum conditions: temperature 50 ° C, pH of 4.5 in sodium acetate buffer 0.1 mol L-1 and reaction time of 10 minutes, with an activity of 11.31 ± 0.36 EU mL-1). We tested some parameters optimization of enzyme immobilization, such as amount of enzyme, immobilization time, pH and temperature of immobilization. The optimal immobilization was obtained in buffer sodium acetate 0.1 mol L-1 pH 4.5, immobilization time of 1 hour at 50°C and 169.55 EU mg-1 PANIG. The efficiency of immobilization was 0.86. The stability of the system PANIG-Invertase was tested against the storage time and thermostability, and after 75 days storage in buffer sodium acetate 0.1 mol L-1 pH 4.5 was obtained for 94% of initial activity with only 17% retained for the free enzyme. The immobilized invertase didn t change the optimal conditions compared to the free, but the immobilized was more stable in adverse conditions such as pH below and above optimum conditions showed an increase in thermostability. Some features of the hydrolysis product were evaluated (water activity, viscosity and color), compared to the sugarcane juice in nature, showing that the reactors allowed changes in sugarcane juice that expand the possibilities for using syrup obtained in the production of sweets, ice cream and syrups rich in fructose. The high stability of the system tested, along with its high retention of activity strongly suggests the use of the system in reactors. / Este trabalho descreve a imobilização da enzima invertase em polianilina sintetizada quimicamente e ativada com glutaraldeído (PANIG) para produção de xarope de açúcar invertido a partir de caldo de cana. Atividade da invertase livre, presente no extrato bruto (E.B.), obtido a partir de células de Saccharomyces cerevisiae, foi caracterizada e estabelecida em temperatura de 50°C; pH de 4,5 em tampão acetato de sódio 0,1 mol L-1 e tempo de reação de 10 minutos, com uma atividade de 11,31 ± 0,36 UE mL-1. A partir da imobilização por ligação covalente, testou-se alguns parâmetros de otimização da imobilização enzimática, como quantidade de enzima, tempo de imobilização, pH e temperatura de imobilização. A imobilização ótima foi obtida em tampão acetato de sódio 0,1 mol L-1 pH 4,5, tempo de imobilização de 1 hora, temperatura de 50°C e 169,55 UE mg-1 de PANIG. A eficiência de imobilização foi de 0,86. A estabilidade do sistema PANIG-Invertase foi testada frente ao tempo de armazenamento e termoestabilidade, sendo que após 75 dias de armazenamento em tampão acetato de sódio 0,1 mol L-1 pH 4,5 obteve-se 94% da atividade inicial, com apenas 17% retidos para a enzima livre. A invertase imobilizada não apresentou variação nas condições ótimas em comparação à livre, porém a imobilizada apresentou-se mais estável em condições adversas, como pH abaixo e acima das condições ótimas e apresentou aumento da termoestabilidade. Algumas características do produto hidrolisado foram avaliadas (Atividade de água, viscosidade e coloração), em comparação ao caldo de cana in natura, mostrando que o sistema testado possibilita modificações no caldo de cana que ampliam as possibilidades de utilização do xarope obtido na produção de doces, sorvetes e xaropes ricos em frutose. A elevada estabilidade do sistema testado, junto à sua retenção elevada de atividade, sugerem a aplicação do sistema em reatores.

Page generated in 0.0737 seconds