• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Photo-Curing Through Single Apertures: The Phenomenon and Its Influence On Polymerization

MacPherson, Meoghan Elizabeth January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Reduction of the polymerization shrinkage stress inherent of dimethacrylate-based resin composites has been a work in progress since the phenomenon was first described by Dr. Rafael L. Bowen in 1967. Contemporary efforts to modify the composites or the curing protocols for polymerization have proven a challenging task with controversial results. Influenced by existing mathematical models relating exposure, curing time and depth of cure of resin composites, a novel method for the reduction of polymerization shrinkage stress is proposed. By polymerizing through a single aperture mask, a dental light curing unit is transformed from a planar light source to a point light source, and a fully cured, three-dimensional “bullet” shaped curing front is predicted for the cured resin below. So long as the edges of the bullet do not touch the cavity walls or floor, the shrinkage stress of the bullet is not transferred. Follow-up with an unmasked curing unit then fully polymerizes the restoration. By reducing the volume of uncured composite in contact with the cavity walls and floor, shrinkage stress of the restoration is also reduced. The objective of the present study was to demonstrate this curing phenomenon with a model resin composite using masks with aperture diameters of 0.5, 0.4, and 0.25 mm and curing times of 10, 20, 30, and 40 seconds. The resulting curing front was evaluated quantitatively and qualitatively. From this, mathematical models of the curing front were derived. Selected combinations of aperture mask and curing time were then investigated to evaluate the influence of this phenomenon on the degree of conversion, Knoop hardness, and polymerization shrinkage stress of the same model resin composite. Group differences were analyzed using a one-way ANOVA at 5% significance.
12

Preparação e caracterização de microesferas poliméricas à base de metacrilato de glicidila e divinilbenzeno com propriedades magnéticas / Preparation and characterization of polymeric microspheres based on glycidyl methacrylate and divinylbenzene with magnetic properties

Carla do Nascimento Queiroz 31 March 2011 (has links)
Nesta Dissertação, foram sintetizadas microesferas poliméricas com propriedades magnéticas à base de metacrilato de glicidila e divinilbenzeno pela técnica de polimerização em suspensão. O material utilizado para conferir as propriedades magnéticas ao copolímero foi magnetita sintetizada no laboratório. Foram estudados os efeitos da modificação da magnetita com ácido oleico, da velocidade de agitação, do teor de agente reticulante, do teor de material magnético adicionado e do teor de agente de suspensão sobre as características das partículas poliméricas obtidas. As microesferas foram caracterizadas quanto ao seu aspecto morfológico, à estabilidade térmica, à incorporação de material magnético e quanto às suas propriedades magnéticas. A quantidade de partículas de ferro incorporadas foi afetada pela velocidade de agitação durante a síntese, pelo teor de material magnético adicionado, pela fase de dispersão do material magnético e pelo teor de monômeros no copolímero. A estabilidade térmica dos copolímeros foi afetada, principalmente, pelo teor de material magnético incorporado e pelo teor de monômeros, levando em consideração resinas com a mesma quantidade de material magnético adicionado. A magnetização de saturação para as microesferas foi afetada pelo teor de material magnético incorporado. A modificação da superfície da magnetita com ácido oleico foi considerada importante para a incorporação do material magnético na matriz do copolímero.Partículas poliméricas magnéticas com comportamento superparamagnéticos foram obtidas com morfologia esférica e magnetização de saturação de 7,11 (emu/g), utilizando razão molar de monômeros de 50/50 %, 1 % de PVA, 20 % de magnetita modificada com ácido oleico adicionada à fase orgânica e velocidade de agitação mecânica de 500 rpm / In this dissertation, polymeric microspheres with magnetic properties based on glycidyl methacrylate and divinylbenzene were synthesized by suspension polymerization technique. In order to obtain magnetic properties, magnetite particles modified by oleic acid were synthesized in laboratory. The effects of stirring rate, concentration of crosslink, the concentration of magnetite added and the concentration of stabilizer on the particles properties were studied. The magnetic microspheres were characterized according their morphology, thermal stability, incorporation of magnetite and their magnetic properties. The incorporate of iron particles content was mainly affected by stirring rate during the synthesis, by the content of magnetic material added, by the dispersion phase of magnetic material and by the monomers content in the copolymer. The thermal stability of copolymers was mainly affected by the content of magnetic material incorporated and by the monomers content, taking in account the resins with the same content of magnetic material added. The saturation magnetization for the microspheres was effected by the content of magnetic material incorporated. The modification with oleic acid was considered important to the incorporation of the magnetic material in the copolymer matrix.Magnetic polymeric particles with superparamagnetic behavior have been obtained with spherical morphology and saturation magnetization of 7.11 (emu/g). It was used monomers molar ratio of 50/50 %, 1% PVA, 20 % magnetite particles modified by oleic acid dispersion on organic phase and stirring rate of 500 rpm during the synthesis
13

Preparação e caracterização de microesferas poliméricas à base de metacrilato de glicidila e divinilbenzeno com propriedades magnéticas / Preparation and characterization of polymeric microspheres based on glycidyl methacrylate and divinylbenzene with magnetic properties

Carla do Nascimento Queiroz 31 March 2011 (has links)
Nesta Dissertação, foram sintetizadas microesferas poliméricas com propriedades magnéticas à base de metacrilato de glicidila e divinilbenzeno pela técnica de polimerização em suspensão. O material utilizado para conferir as propriedades magnéticas ao copolímero foi magnetita sintetizada no laboratório. Foram estudados os efeitos da modificação da magnetita com ácido oleico, da velocidade de agitação, do teor de agente reticulante, do teor de material magnético adicionado e do teor de agente de suspensão sobre as características das partículas poliméricas obtidas. As microesferas foram caracterizadas quanto ao seu aspecto morfológico, à estabilidade térmica, à incorporação de material magnético e quanto às suas propriedades magnéticas. A quantidade de partículas de ferro incorporadas foi afetada pela velocidade de agitação durante a síntese, pelo teor de material magnético adicionado, pela fase de dispersão do material magnético e pelo teor de monômeros no copolímero. A estabilidade térmica dos copolímeros foi afetada, principalmente, pelo teor de material magnético incorporado e pelo teor de monômeros, levando em consideração resinas com a mesma quantidade de material magnético adicionado. A magnetização de saturação para as microesferas foi afetada pelo teor de material magnético incorporado. A modificação da superfície da magnetita com ácido oleico foi considerada importante para a incorporação do material magnético na matriz do copolímero.Partículas poliméricas magnéticas com comportamento superparamagnéticos foram obtidas com morfologia esférica e magnetização de saturação de 7,11 (emu/g), utilizando razão molar de monômeros de 50/50 %, 1 % de PVA, 20 % de magnetita modificada com ácido oleico adicionada à fase orgânica e velocidade de agitação mecânica de 500 rpm / In this dissertation, polymeric microspheres with magnetic properties based on glycidyl methacrylate and divinylbenzene were synthesized by suspension polymerization technique. In order to obtain magnetic properties, magnetite particles modified by oleic acid were synthesized in laboratory. The effects of stirring rate, concentration of crosslink, the concentration of magnetite added and the concentration of stabilizer on the particles properties were studied. The magnetic microspheres were characterized according their morphology, thermal stability, incorporation of magnetite and their magnetic properties. The incorporate of iron particles content was mainly affected by stirring rate during the synthesis, by the content of magnetic material added, by the dispersion phase of magnetic material and by the monomers content in the copolymer. The thermal stability of copolymers was mainly affected by the content of magnetic material incorporated and by the monomers content, taking in account the resins with the same content of magnetic material added. The saturation magnetization for the microspheres was effected by the content of magnetic material incorporated. The modification with oleic acid was considered important to the incorporation of the magnetic material in the copolymer matrix.Magnetic polymeric particles with superparamagnetic behavior have been obtained with spherical morphology and saturation magnetization of 7.11 (emu/g). It was used monomers molar ratio of 50/50 %, 1% PVA, 20 % magnetite particles modified by oleic acid dispersion on organic phase and stirring rate of 500 rpm during the synthesis
14

The influence of reactive modification on the compatibility of polyolefins with non-olefinic thermoplastics

Lim, Henry C. A. January 2011 (has links)
Polyethylene (PE) resins being non-polar in nature and having a high degree of crystallinity have limited miscibility and compatibility when blended with polar polymers. The miscibility and compatibility of these blends are generally worsened when they are prepared by direct injection moulding without a precompounding process. Such situations are commonly encountered in particular by polymer converters when blending colour and/or additive concentrates, commonly known as masterbatches. Typically, masterbatches are mixtures containing high loading of pigments and/or additives predispersed in a suitable solid vehicle (commonly known as carrier) such as a polyethylene resin. These masterbatches are usually used for the colouration of a wide range of polymers and the carrier used must therefore be compatible with these matrix (host) polymers. The preliminary stage of this study involved the investigation of the properties of blends based on high density polyethylene (HDPE) and a range of engineering thermoplastics (ABS, PC, PBT, PA6), prepared by injection moulding. Five different types of compatibilisers namely, ethylene-vinyl acetate (EVA) copolymer, ethylene-methyl acrylate (EMA) copolymer, ethylene-glycidyl methacrylate (E-GMA) copolymer, ethylene-methyl acrylateglycidyl methacrylate (E-MA-GMA) terpolymer and maleic anhydride grafted HDPE (HDPE-g-MAH) copolymer were evaluated with respect to their efficiencies in compatibilising HDPE with the four engineering polymers. The pre-compounded HDPE/compatibiliser binary blends at 2 different blend ratios (1:1 and 3:1) were added at 15 wt% concentration to each engineering thermoplastics and test samples were produced directly by injection moulding. Results of mechanical testing and characterisation of the blends showed that glycidyl methacrylate compatibilisers, E-MA-GMA, in particular have the most universal compatibilising effectiveness for a range of engineering thermoplastics including ABS, PC, PBT, and PA6. Blends compatibilised with E-MA-GMA compatibiliser had the best notched impact performance irrespective of matrix polymer type. The presence of an acrylic ester (methyl acrylate) comonomer in E-MA-GMA resulted in increased polarity of the ii compatibiliser leading to improved miscibility with the polar matrix polymers demonstrated by fine blend morphologies, melting point depression and reduction in crystallinity of the HDPE dispersed phase. The second stage of this study involved the reactive modification of HDPE using a low molecular weight di-functional solid diglycidyl ether of bisphenol A (DGEBA) type epoxy resin compatibilised with HDPE-g-MAH in an attempt to improve its compatibility with ABS, PBT and PA6. The maleic anhydride moieties in HDPE-g-MAH served as reactive sites for anchoring the epoxy moieties while the HDPE backbone was miscible with the HDPE resin. An excessive amount of reactive groups resulted in the formation of crosslinked gels while the addition of EVA co-compatibiliser helped in the reduction of gel content and further improved the dispersion of the epoxy. The effectiveness of epoxy grafted HDPE (with and without EVA co-compatibiliser) in compatibilising ABS/HDPE, PBT/HDPE, and PA6/HDPE was investigated by injection moulding of 5 wt% functionalised HDPE with these matrix polymers into test bars for mechanical testing, and characterisation by differential scanning calorimtery (DSC) and optical microscopy. The reactively functionalised HDPE blends, improved the mechanical properties of ABS and PA6 blends especially with EVA as co-compatibiliser. However, the mechanical properties of PBT blends were unmodified by the functionalised HDPE which was believed to be due to end-capping of the PBT chain-ends by ungrafted epoxy resins.
15

Effect of simulated intraoral erosion and/or abrasion effects on etch-and-rinse bonding to enamel.

Wang, Linda, Casas-Apayco, Leslie, Hipólito, Ana Carolina, Dreibi, Vanessa Manzini, Giacomini, Marina Ciccone, Bim Júnior, Odair, Rios, Daniela, Magalhães, Ana Carolina 02 1900 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / PURPOSE: To assess the influence of simulated oral erosive/abrasive challenges on the bond strength of an etch-and-rinse two-step bonding system to enamel using an in situ/ex vivo protocol. METHODS: Bovine enamel blocks were prepared and randomly assigned to four groups: CONT - control (no challenge), ABR - 3x/day-1 minute toothbrushing; ERO - 3x/day - 5 minutes extraoral immersion into regular Coca Cola; and ERO+ABR - erosive protocol followed by a 1-minute toothbrushing. Eight blocks were placed into an acrylic palatal appliance for each volunteer (n = 13), who wore the appliance for 5 days. Two blocks were subjected to each of the four challenges. Subsequently, all the blocks were washed with tap water and Adper Single Bond 2/Filtek Z350 were placed. After 24 hours, 1 mm2 beams were obtained from each block to be tested with the microtensile bond strength test (50 N load at 0.5 mm/minute). The data were statistically analyzed by one-way RM-ANOVA and Tukey's tests (alpha = 0.05). RESULTS: No difference was detected among the ABR, ERO, and CONT groups (P > 0.05). ERO+ABR group yielded lower bond strengths than either the ABR and ERO groups (P < 0.0113). / Revisión por pares
16

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 13 October 2016 (has links) (PDF)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.
17

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 16 September 2016 (has links)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.:1. Introduction 2. Theoretical section 2.1. Magnetite Nanoparticles (MNPs) 2.2. Applications of MNPs 2.3. Atom transfer radical polymerization (ATRP) 2.4. Magnetic nanocomposites (MNCs) 2.5. Damage-free structural health monitoring (SHM) using MNPs 3. Objective of the work 4. Materials, methods and characterization 4.1. Materials 4.2. Methods 4.3. Formation of polymeric magnetic nanocomposites 4.4. Characterization 5. Results and discussions 5.1. Unmodified magnetite nanoparticles (Fe3O4 NPs) 5.2. Oleic acid-modified (Fe3O4–OA) NPs 5.3. PGMA-modified NPs by grafting-from approach (Fe3O4-gf-PGMA NPs) 5.4. PGMA-modified NP by grafting-to approach (Fe3O4-gt-PGMA NPs) 5.5. Comparison between grafting-from and grafting-to Fe3O4-PGMA NPs 5.6. Magnetic epoxy nanocomposites (MENCs) 5.7. Fiber-reinforced epoxy nanocomposites 6. Conclusions and outlook 7. Appendix 8. List of figures, schemes and tables 9. References Versicherung Erklaerung List of publications
18

Bacterial cellulose nanowhiskers to enhance the properties of plastics and bioplastics of interest in food packaging

Martínez Sanz, Marta 01 July 2013 (has links)
El presente trabajo tiene por objetivo estudiar las aplicaciones de los nanocristales o ¿nanowhiskers¿ extraídos mediante hidrólisis ácida de celulosa bacteriana (BCNW) para el desarrollo de materiales poliméricos y biopoliméricos con propiedades mejoradas para su uso en aplicaciones de envasado de alimentos. En primer lugar se estudió y optimizó el proceso de extracción de BCNW. Se desarrolló un procedimiento de extracción con ácido sulfúrico, que permitió obtener nanocristales con elevada relación de aspecto y cristalinidad y al mismo tiempo, un elevado rendimiento de extracción. Este procedimiento comprende una posterior etapa de neutralización que resultó ser necesaria para garantizar la estabilidad térmica de los nanocristales. El siguiente paso consistió en la formulación de materiales nanocompuestos con propiedades mejoradas incorporando BCNW en diferentes matrices plásticas, en concreto copolímeros de etileno-alcohol vinílico (EVOH), ácido poliláctico (PLA) y polihidroxialcanoatos (PHAs). Mediante las técnicas de electroestirado y estirado por soplado se generaron fibras híbridas de EVOH y PLA con BCNW. La incorporación de BCNW en las disoluciones empleadas para producir fibras modificó significativamente sus propiedades (viscosidad, tensión superficial y conductividad) y por tanto, la morfología de las fibras se vio afectada. Además, se generaron fibras con propiedades antimicrobianas mediante la incorporación de aditivos, maximizando el efecto antimicrobiano con la adición de sustancias de carácter hidrofílico. Seguidamente, se produjeron nanocompuestos por mezclado en fundido y se desarrollaron técnicas de pre-incorporación de BCNW para evitar la aglomeración de los mismos no sólo en matrices hidrofílicas como el EVOH, sino también en matrices hidrofóbicas como el PLA. La dispersión óptima de BCNW resultó en una mejora de las propiedades mecánicas y de barrera de los nanocompuestos. También se estudió la modificación de la superficie de los nanocristales mediante copolimerización con poli(glicidil metacrilato) para mejorar la compatibilidad de BCNW con una matriz hidrofóbica como el PLA. Se incluyen además los primeros resultados obtenidos en cuanto a la producción de nanobiocompuestos sintetizados por microorganismos, que consisten en PHAs con diferentes contenidos de hidroxivalerato reforzados con BCNW. Por último, se desarrollaron películas con propiedades de alta barrera basadas en películas de BCNW recubiertas con capas hidrofóbicas. El recubrimiento mediante la deposición de fibras por electrospinning seguido de homogeneización por calentamiento garantizó una buena adhesión entre las diferentes capas, protegiendo así las películas de BCNW del efecto negativo de la humedad. / Martínez Sanz, M. (2013). Bacterial cellulose nanowhiskers to enhance the properties of plastics and bioplastics of interest in food packaging [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30312 / TESIS / Premios Extraordinarios de tesis doctorales

Page generated in 0.0767 seconds