• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of variant cytosolic serine hydroxymethyltransferases

Chave, Karen Judy January 1997 (has links)
No description available.
2

Organelle function in photorespiratory glycine metabolism

Dry, Ian Barry. January 1984 (has links) (PDF)
Bibliography: leaves [i]-xvi.
3

Organelle function in photorespiratory glycine metabolism / by Ian Barry Dry

Dry, Ian Barry January 1984 (has links)
Bibliography: leaves [i]-xvi / xi, 132, xvi, [137] leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, 1984
4

Efeitos da mal nutrição protéica sobre o metabolismo da glicina em cerebelo de ratos durante o seu desenvolvimento / Study of developmental effects of protein malnutrition on glycine metabolism in cerebellum of rats

Souza, Karine Bresolin de January 2003 (has links)
Resumo não disponível. / Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of brain development (1). All restriction of protein during the perinatal period of life can alter the development of mammalian fetus and have marked repercussions on development of the Central Nervous System (CNS). The brain is vulnerable to protein malnutrition with altered morphologic and biochemical maturation, leading to impaired functions. The focus of this study is to investigate [U-14C]glycine metabolism in malnourished rats submitted to pre- and postnatal protein deprivation (diet: 8% protein with addition and without addition of L-methionine) on glycine metabolism of rats (normonourished group: 25% protein). It was observed that protein malnutrition alters oxidation to CO2, conversion to lipids and protein synthesis from [U-14C]glycine in cerebellum of malnourished rats without addition of L-methionine on a diet at 7 and 21 days of postnatal life. Our results also indicate that protein malnutrition causes a retardation in the normally ordered progression of brain development, and the malnourished groups have smaller cells, reduction in cell numbers and smaller cerebellar weight comparing to the control group.
5

Efeitos da mal nutrição protéica sobre o metabolismo da glicina em cerebelo de ratos durante o seu desenvolvimento / Study of developmental effects of protein malnutrition on glycine metabolism in cerebellum of rats

Souza, Karine Bresolin de January 2003 (has links)
Resumo não disponível. / Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of brain development (1). All restriction of protein during the perinatal period of life can alter the development of mammalian fetus and have marked repercussions on development of the Central Nervous System (CNS). The brain is vulnerable to protein malnutrition with altered morphologic and biochemical maturation, leading to impaired functions. The focus of this study is to investigate [U-14C]glycine metabolism in malnourished rats submitted to pre- and postnatal protein deprivation (diet: 8% protein with addition and without addition of L-methionine) on glycine metabolism of rats (normonourished group: 25% protein). It was observed that protein malnutrition alters oxidation to CO2, conversion to lipids and protein synthesis from [U-14C]glycine in cerebellum of malnourished rats without addition of L-methionine on a diet at 7 and 21 days of postnatal life. Our results also indicate that protein malnutrition causes a retardation in the normally ordered progression of brain development, and the malnourished groups have smaller cells, reduction in cell numbers and smaller cerebellar weight comparing to the control group.
6

Efeitos da mal nutrição protéica sobre o metabolismo da glicina em cerebelo de ratos durante o seu desenvolvimento / Study of developmental effects of protein malnutrition on glycine metabolism in cerebellum of rats

Souza, Karine Bresolin de January 2003 (has links)
Resumo não disponível. / Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of brain development (1). All restriction of protein during the perinatal period of life can alter the development of mammalian fetus and have marked repercussions on development of the Central Nervous System (CNS). The brain is vulnerable to protein malnutrition with altered morphologic and biochemical maturation, leading to impaired functions. The focus of this study is to investigate [U-14C]glycine metabolism in malnourished rats submitted to pre- and postnatal protein deprivation (diet: 8% protein with addition and without addition of L-methionine) on glycine metabolism of rats (normonourished group: 25% protein). It was observed that protein malnutrition alters oxidation to CO2, conversion to lipids and protein synthesis from [U-14C]glycine in cerebellum of malnourished rats without addition of L-methionine on a diet at 7 and 21 days of postnatal life. Our results also indicate that protein malnutrition causes a retardation in the normally ordered progression of brain development, and the malnourished groups have smaller cells, reduction in cell numbers and smaller cerebellar weight comparing to the control group.
7

Creatine: Physiology and performance: The health effects of creatine in exercise and human performance

Perez, Gerardo Gomez 01 January 2004 (has links)
The purpose of this project is to review literature on creatine monohydrate (simply known as creatine/Cr) supplementation and its effects on exercise, human performance, and health. Included in this project is basic information relating to the biochemical and physiological effects of Cr, including possible side effects.

Page generated in 0.0387 seconds