• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 51
  • 18
  • 15
  • 15
  • 14
  • 13
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Novel pathogenic mechanisms of myasthenic disorders and potential therapeutic approaches

Zoltowska, Katarzyna Marta January 2014 (has links)
Congenital myasthenic syndrome (CMS) and myasthenia gravis (MG) are, respectively, inherited or autoimmunological disorders caused by aberrant neuromuscular transmission, which manifests as fatiguable muscle weakness. A novel subtype of CMS, resulting from mutations in GFPT1 and characterised by a limb girdle pattern of muscle weakness, has been described. The gene encodes L glutamine:D fructose-6-phosphate amidotransferase 1 (GFAT1) – a key rate limiting enzyme in the hexosamine biosynthetic pathway, providing building blocks for glycosylation of proteins and lipids. The research focused on the molecular bases of the CMS resulting from mutations in the ubiquitously expressed gene, but with symptoms largely restricted to the neuromuscular junction (NMJ). The work has established a link between the NMJ and GFPT1 CMS by demonstrating that the AChR cell surface is decreased in GFPT1 patient muscle cells and in GFPT1-silenced cell lines. The decrease is likely to be caused by reduced steady-state levels of individual AChR α, δ and ε, but not β, subunits. To optimise treatment for myasthenic disorders, a comparative in vivo trial of therapy with pyridostigmine bromide and salbutamol sulphate, and pyridostigmine bromide alone, was conducted. Supplementation of the AChE inhibitor-based therapy with the β2-adrenergic receptor agonist had a beneficial effect. This offers promise for more effective treatments for CMS and MG affected individuals. Molecular causes of MG were also investigated. The search for novel antibody targets was conducted with the use of a designed cell-based assay for the detection of anti COLQ autoimmunoglobulins in MG patient sera. The antibodies were detected in 24 out of 418 analysed samples, but their pathogenicity has not been determined.
42

Design, synthesis and biological evaluation of glycosidase inhibitors in an anti-cancer setting

Glawar, Andreas Felix Gregor January 2013 (has links)
The aim of the work described in this thesis was to explore the synthesis of glycosidase inhibitors and to evaluate their potential as anti-cancer agents. Glycosidases catalyze the fission of glycosidic bonds and are involved in vital biological functions. With regard to their potential for anti-cancer therapy, two glycosidases were identified: α-N-acetyl-galactosaminidase and β-N-acetyl-hexosaminidase. The former has been implicated in causing immunosuppression in advanced cancer patients by negating the effect of the macrophage activating factor (MAF), while the latter is secreted by invading cancer cells and hence associated with metastasis formation. The synthetic focus was on generating piperidine and azetidine iminosugars, carbohydrate mimetics with their endocylic oxygen replaced by nitrogen. Their structural similarity to carbohydrates make iminosugars excellent inhibitors of glycosidases. Following synthesis of a pipecolic amide, its previously reported potent β-N-acetyl-hexosaminidase inhibition was confirmed. This data, along with inhibition profiles of several pyrrolidines, allowed the generation of a molecular model for predicting activity of β-N-acetyl-hexosaminidase inhibitors. The model was used to select azetidines in the D/L-ribo and D-lyxo configuration as suitable candidates to be explored in novel chemical space, leading to the first synthesis of a fully unprotected 3-hydroxy-2-carboxy-azetidine. The potent α-N-acetyl-galactosamindase inhibitor 2-acetamido-1,2-dideoxy-D-galacto-nojirimycin (DGJNAc) was successfully derivatised via N-alkylation. Important structural discoveries with regard to glycosylation of vitamin D<sub>3</sub>-binding protein, the precursor of MAF, were made using MALDI mass-spectrometry. By comparing the enzymatic and cellular inhibition of N-alkylated derivatives of DGJNAc and a pyrrolidine the following generalization on iminosugar biodistribution was found: N-butylation promotes uptake into the cell/organelles, while hydrophilic side-chains restrict cellular access. An in vitro assay evaluating cancer cell invasion was devised and β-N-acetyl-hexoamindase inhibitors were shown to retard cell migration, including with the highly metastatic breast cancer cell line MDA-MB-231. Additive effects where found when the iminosugar was combined with a protease inhibitor, suggesting potential for future combination therapy.
43

The lipopolysaccharide of Haemophilus parainfluenzae

Young, Rosanna E. B. January 2011 (has links)
Haemophilus parainfluenzae (Hp) and H. influenzae (Hi) are closely related members of the Pasteurellaceae family and are common commensal bacteria of the human nasopharynx. Whilst Hi is frequently implicated in meningitis, otitis media and respiratory tract infections, reports of pathogenic behaviour by Hp are very rare. Lipopolysaccharide (LPS) is a key component of the Gram negative cell wall, and its structure influences the ability of Haemophilus to interact with the host and evade immune clearance. A better understanding of the differences in LPS structure between Hi and Hp could help to ascertain which parts of the molecule are important for commensal and pathogenic behaviour. Hi LPS comprises lipid A, a conserved oligosaccharide inner core, and an oligosaccharide outer core that differs between strains. The latter is partly phase variable by the slipped strand mispairing during replication of DNA repeat tracts within several LPS biosynthesis genes. Very little was known about LPS in Hp so we investigated its biosynthesis and structure in a panel of 20 Hp carriage isolates. Using PCR, DNA sequencing and Southern analysis we demonstrated that Hp possesses homologues of the Hi lipid A and inner core LPS synthesis genes and a few of the genes for outer core synthesis; however, homologues of the Hi phase variable outer core genes were largely absent and did not contain repeat tracts. The results of immunoblotting and collaborative structural analysis were consistent with this data. Phosphocholine, a phase variable Hi LPS epitope that has been implicated in otitis media, was found to be absent in Hp LPS due to the lack of four genes required for its biosynthesis and incorporation. The introduction of these genes into Hp led to the phase variable addition of phosphocholine to the LPS, indicating that there is no fundamental reason why Hp could not use a similar mechanism of variation to Hi if it was advantageous to do so. SDS-PAGE data suggested the presence of O-antigens (repeated chains of sugars) in many of the Hp strains, an unusual feature for Haemophilus, and all of the strains were found to contain a potential O-antigen synthesis locus. Each locus encodes homologues of several glycosyltransferases in addition to either the Wzy polymerase- or ABC transporter-dependent mechanisms of O-antigen synthesis and transport. Comparisons of wild type and isogenic mutant strains showed that the O-antigen enhances resistance to complement-mediated killing and appears to affect adhesion to epithelial cells in vitro. Hp is a successful commensal organism but lacks the flexibility of adapting its LPS using repeat-mediated phase variation, potentially limiting its range of host niches.
44

The synthesis of branched sugars and iminosugars

Parry, Loren L. January 2011 (has links)
Iminosugars, carbohydrate analogues in which nitrogen replaces the endocyclic oxygen, have attracted much interest due to their biological activity. Iminosugars inhibit carbohydrate-processing enzymes, thereby affecting many biological processes. Several iminosugars are licensed drugs, with many more compounds undergoing clinical trials. The main subject of this thesis is the synthesis and evaluation of novel iminosugars, particularly the effects of structural modifications on the biological activity of these compounds. Chapter 1 describes the role of carbohydrate-processing enzymes in the body, and explores the therapeutic applications of iminosugars that arise from their activity against these enzymes. Examples of substituted iminosugars are reviewed, and the effects of substituents on enzyme inhibition are described. Chapter 2 concerns methyl-branched swainsonine derivatives. Swainsonine has shown potential as a cancer treatment through its inhibition of &alpha;-mannosidase. The synthesis of (6R)- and (6S)-C-methyl D-swainsonine is described; both compounds were potent and selective &alpha;-mannosidase inhibitors (IC<sub>50</sub> 3.8 &mu;M, 14 &mu;M). Although less active than the parent compound, their selectivity for Golgi mannosidase over lysosomal mannosidase may be more important than the absolute value against the model enzyme. Chapter 3 describes the synthesis of a 2-C-methyl L-fucose derivative. A diastereoselective Kiliani reaction allowed the formation of a single lactone bearing a new quaternary centre. The utility of this intermediate in accessing di-branched iminosugars was explored; however, attempts to introduce nitrogen to the lactone lacked the necessary stereoselectivity. Chapter 4 relates to the synthesis of pyrrolidine iminosugars, specifically methyl amides. Two enantiomeric dihydroxyproline amides were synthesised; the D-proline derivative was a potent &beta;-N-acetylhexosaminidase inhibitor (IC<sub>50</sub> values of up to 3.6 &mu;M), but the L-enantiomer was completely inactive. Inhibition of N-acetylhexosaminidases is relevant to the treatment of cancer and lysosomal storage diseases, and this work contributed to a wider project investigating the effects of altered stereochemistry on the biological activity of pyrrolidine amides.
45

Refocusing antibody responses by chemical modification of vaccine antigens

Schiffner, Torben January 2014 (has links)
The envelope glycoprotein (Env) of Human Immunodeficiency Virus 1 (HIV-1) has developed several immune-evasion mechanisms to avoid the induction of neutralising antibodies, including immunodominant non-neutralising epitopes, conformational flexibility of conserved epitopes, and spontaneous subunit dissociation, thus impeding vaccine development. Here, chemical modification of Env-based vaccine antigens is explored to overcome these obstacles. Firstly, covalent fixation of Env by chemical cross-linking was used to stabilise the conformationally flexible structure and prevent subunit dissociation. Cross-linked Env constructs showed reduced binding of many non-neutralising antibodies whilst largely maintaining antibody recognition by broadly neutralising antibodies. Compared to unmodified material, immunisation with some of these cross-linked proteins led to the induction of significantly increased antibody titres targeting the conserved CD4 binding site of Env despite similar overall antibody titres. These refocused antibody responses resulted in increased serum neutralising titres compared to animals receiving unmodified protein. Secondly, an epitope masking strategy was developed to reduce or eliminate the immunogenicity of neutralisation-irrelevant surfaces. This was achieved using site-selective addition of theoretically immunosilent glycoconjugates to lysine residues. Masking of model protein hen egg lysozyme (HEL) led to site-selective loss of antibody binding to the modification sites in vitro, which translated into refocusing of antibody responses from masked to unmasked epitopes in vivo. Mutant HIV-1 and influenza virus surface glycoproteins were designed that had lysine residues removed from close proximity to the respective broadly neutralising epitopes, but added throughout the remaining surface. Masking of these mutant proteins with second-generation glycoconjugates led to predictable perturbations of antibody binding in vitro. However, administration of these modified glycoproteins revealed unexpectedly that the masking glycans were highly immunogenic in vivo. Thus, this strategy may well prove useful if truly non-immunogenic glycoconjugates can be identified. Taken together, these chemical modifications of vaccine antigens may allow focused targeting of specific antigenic regions for increased B cell recognition, and may thus be a valuable tool for vaccine antigen design.
46

Structural and functional studies of the hedgehog signalling pathway

Whalen, Daniel M. January 2012 (has links)
Hedgehog (Hh) morphogens play fundamental roles in development whilst dysregulation of Hh signalling leads to disease. Multiple receptors are involved in the modulation of Hh morphogens at the cell surface. Among these, the interactions of Hh ligands with glycosaminoglycan (GAG) (for example heparan or chondroitin sulphate) chains of proteoglycans in the extracellular matrix play a key role in shaping morphogen gradients and fulfil important functions in signal transduction. Several high resolution crystal structures of Sonic Hh (Shh)-GAG complexes have been determined. The interaction determinants, confirmed by binding studies and mutagenesis reveal a novel Hh site for GAG interactions, which appears to be common to all Hh proteins. This novel site is supported by a wealth of published functional data, and resides in a hot spot region previously found to be crucial for Hh receptor binding. Crystal packing analysis combined with analytical ultracentrifugation on Hh-GAG complexes suggest a potential mechanism for GAG-dependent multimerisation. A key step in the Hh pathway is the transduction of the Hh signal into the receiving cell. The Hh signal transducer, Smoothened, is a key target drug target in the pathway with several modulators in clinical trials, despite an absence of structural data. Smoothened is required to activate all levels of Hh signalling. Recent evidence points to the conserved N-terminal ectodomain (ECD) in regulating Smo activity, from vertebrates to invertebrates. Despite the central importance of the ECD, its precise function remains elusive. A crystal structure of the ECD at 2.2 &Aring; resolution is reported here. Structural analysis and biophysical experiments are discussed with reference to the potential function of this intriguing domain.
47

Photochemical Surface Functionalization : Synthesis, Nanochemistry and Glycobiological Studies

Deng, Lingquan January 2011 (has links)
This thesis mainly deals with the development of photochemical approaches to immobilize carbohydrates on surfaces for glycobiological studies. These approaches have been incorporated into a number of state-of-the-art nanobio-platforms, including carbohydrate microarrays, surface plasmon resonance (SPR), quartz crystal microbalance (QCM), atomic force microscopy (AFM), and glyconanomaterials. All the surfaces have displayed good binding capabilities and selectivities after functionalization with carbohydrates, and a range of important data have been obtained concerning surface characteristics and carbohydrate-protein interactions, based on the platforms established. Besides, a variety of non-carbohydrate and carbohydrate-based molecules have been synthesized, during which process the mutarotation of 1-glycosyl thiols and the stereocontrol in 1-S-glycosylation reactions have been thoroughly studied. / QC 20111004
48

Regulatory Mechanisms of the Immune System Downstream of Host and Microbial Glycans

Zhou, Julie Y. 25 January 2022 (has links)
No description available.
49

Reaction engineering for protein modification : tools for chemistry and biology

Chalker, Justin M. January 2011 (has links)
Chemical modification of proteins is critical for many areas of biochemistry and medicine. Several methods for site-selective protein modification are reported in this Thesis that are useful in accessing both natural and artificial protein architectures. Multiple, complementary methods for the conversion of cysteine to dehydroalanine are described. Dehydroalanine is used as a general precursor to several post-translational modifications and glycosylation, polyprenylation, phosphorylation, and lysine methylation and acetylation are all accessible. These modifications and their mimics were explored on multiple proteins, including histone proteins. Unnatural modifications were also explored. The first examples of olefin metathesis and Suzuki-Miyaura cross-coupling on protein substrates are reported. Allyl sulfides were discovered to be remarkably reactive substrates in olefin metathesis, allowing use of this reaction in water and on proteins. For Suzuki-Miyaura cross-coupling, a new catalyst is described that is fully compatible with proteins. Both olefin metathesis and cross-coupling allow the formation of carbon-carbon bonds on proteins. The prospects of these transformations in chemical biology are discussed. Finally, a novel strategy is reported for the installation of natural, unnatural, and post-translationally modified amino acid residues on proteins. This technology relies on addition of carbon radicals to dehydroalanine. This method of "chemical mutagenesis" is anticipated to complement standard genetic manipulation of protein structure.
50

Structural studies of Norrin dependent Wnt/beta-catenin signaling

Chang, Tao-Hsin January 2014 (has links)
Norrin is a secreted cystine-knot growth factor that plays critical roles in vascular development in the brain, retina, and cochlea, as well as the uterus. Although Norrin is unrelated to the lipid-modified morphogens Wnts, Norrin activates the canonical Wnt/&beta;-catenin pathway by binding to receptor Frizzled4 cysteine-rich domain (Fz4-CRD) and co-receptors of low density lipoprotein receptor related protein 5/6 ectodomain (Lrp5/6-ECD) in conjunction with Tetraspanin-12 (Tspan-12). Like Wnts, Norrin has limited extracellular diffusion properties as a result of associating with heparan sulfate proteoglycans (HSPGs). Mutations lead to inherited disordered retinal vascularization diseases such as Norrie disease, familial exudative vitreoretinopathy and coats' disease. However, the molecular mechanism of how Norrin initiates signalling by engagement with Fz4, Lrp5/6, and HSPGs has remained unresolved. Here, novel strategies for protein production of recombinant human Norrin and Fz4-CRD as well as the complex are developed. The crystal structures of Norrin and its complex with Fz4-CRD, plus complex bound with the heparin mimic sucrose octasulphate, and unliganded structures of Fz4-CRD are presented. These structural data together with biophysical and cellular assays not only reveal the Fz4 and Lrp5/6 binding sites on distinct patches of the Norrin surface, but also indicate the HSPGs binding site on Norrin and Fz4-CRD as well as providing a framework to explain numerous disease-related mutations. Structural comparison with Xenopus Wnt8 in complex with mouse Fz8-CRD provides molecular insights for our understanding of ligand-receptor binding specificity and promiscuity, which has important implications for developing therapeutic strategies against Norrin dependent retinal disorders, and cancers caused by abnormal Wnt signaling.

Page generated in 0.0458 seconds