Spelling suggestions: "subject:"granular flow"" "subject:"cranular flow""
21 |
Two-fluid modelling of heterogeneous coarse particle slurry flowsKrampa, Franklin Norvisi 13 February 2009 (has links)
In this dissertation, an experimental and numerical study of dense coarse solids-liquid flows has been performed. The experimental work mainly involved pressure drop measurements in a vertical flow loop. A limited number of measurements of solids velocity profiles were also obtained in the upward flow section of the flow loop. The numerical work involved simulations of coarse particles-in-water flows in vertical and horizontal pipes. The vertical flow simulations were performed using the commercial CFD software, ANSYS CFX-4.4, while ANSYS CFX-10 was used to simulate the flows in the horizontal pipes. The simulations were performed to investigate the applicability of current physically-based models to very dense coarse-particle flows.<p>
In the experimental study, measurements of pressure drop and local solids velocity profiles were obtained. The experiments were conducted in a 53 mm diameter vertical flow loop using glass beads of 0.5 mm and 2.0 mm diameter solids for concentration up to 45%. The liquid phase was water. The measured pressure drop exhibited the expected dependence on bulk velocity and solids mean concentration. The wall shear stress was determined by subtracting the gravitational contribution from the measured pressure drop. For flow with the 0.5 mm particles at high bulk velocities, the values of the wall shear stress were essentially similar for each concentration in the upward flow sections but more variation, indicating the effect of concentration, was noted in the downward flow section. At lower bulk velocities, the wall shear stresses with the 0.5 mm glass beads-water flow showed a dependence on concentration in both test sections. This was attributed to an increase in the slip velocity. For the large particle (2.0 mm glass beads), similar observations were made but the effect of concentration was much less in the upward test section. In the downward test section, the wall shear stress for the flow of the 2.0 mm glass beads increased by almost a constant value for the bulk velocities investigated. The solids velocity profiles showed that the solids velocity gradient is large close to the wall. In addition, the solids velocity profiles indicated that the slip velocity increased at lower velocities due to increase in the bulk concentration in the upward flow section.<p>
For the vertical flow simulations, different physical models based on the kinetic theory of granular flows were programmed and implemented in ANSYS CFX-4.4. These models, referred to as the kf-ef-ks-es, kf-ef-ks-es-Ts and kf-ef-ks-kfs models, were investigated by focusing on the closure laws for the solids-phase stress. The treatment of the granular temperature Ts depends on whether small- or large-scale fluctuating motion of the particles is considered. The models were implemented via user-Fortran routines. The predicted results were compared with available experimental results. The predicted solids-phase velocity profiles matched the measured data quite well close to the pipe wall but over-predicted it in the core region. The solids concentration, on the other hand, was significantly under-predicted for concentrations higher than 10%. Variations in the predictions of the phasic turbulent kinetic energy and the eddy viscosity were noted; the effect of solids concentration on them was mixed. A general conclusion drawn from the work is that a more accurate model is required for accurate and consistent prediction of coarse particle flows at high concentrations (less than 10%). In a related study, attention was given to wall boundary conditions again focusing on the effect of the solids-phase models at the wall. Comparison between numerical predictions, using some of the existing wall boundary condition models for the solids phase in particulate flows, with experimental results indicated that the physical understanding of the influence of the fluid and solids-phase on each other and their effect on frictional head loss is far from complete. The models investigated failed to reproduce the experimental results. At high solids concentration, it was apparent from the present study that the no-slip and free-slip wall boundary conditions are not appropriate for liquid-solid flows.<p>
For the horizontal flow case, three-dimensional simulations were performed with a focus on the velocity and concentration distributions. Medium and coarse sand-in-water flows in three pipe diameters were considered to investigate the default solids stress models in ANSYS CFX-10. Simulations were performed for three cases by considering: 1) no additional solids-phase stress, i.e. no model for Ts; 2) a zero equation, and 3) an algebraic equilibrium model for the granular temperature. The model predictions were compared to experimental results. The effect of particle size, solids-phase concentration, and pipe diameter was explored using the algebraic equilibrium model. All the cases for the models considered exhibited the characteristic features of horizontal coarse particle slurry flows. The zero equation and the algebraic equilibrium model for the granular temperature produced similar results that were not significantly different from the prediction obtained when no solids-phase stress was considered. The comparison with experimental results was mixed. Locally, the measured solids-phase velocity distributions were over-predicted, whereas the solids concentration was reasonably reproduced in the core of all the pipes. The concentration at the bottom and top walls were over-, and under-predicted, respectively. This was attributed to the inappropriate phasic wall boundary condition models available.
|
22 |
[en] A MATHEMATICAL FORMULATION OF THE THEORY OF GRANULAR MATERIALS / [pt] UMA FORMULAÇÃO MATEMÁTICA DA TEORIA DE MATERIAIS GRANULARESJOSE CARLOS LEITE DOS SANTOS 14 March 2018 (has links)
[pt] O propósito deste trabalho é propor um modelo teórico axiomático, que descreva o comportamento termomecânico de materiais granulares, fundamentado em uma descrição física simples, do que entende-se por material granular. No capítulo I, faz-se uma revisão bibliográfica, objetivando uma visão geral do estado da arte e delinear a importância do estudo de materiais granulares. No capítulo II, utiliza-se um método axiomático estabelecendo-se as equações de balanço que descrevem o comportamento termodinâmico de materiais granulares. No capítulo III, utilizando-se um outro método axiomático, analisa-se algumas condições de contorno para materiais granulares. No capítulo IV, estuda-se restrições internas em materiais granulares, exemplificando-se algumas. Finalmente no capítulo V, aplica-se o embasamento teórico dos capítulos anteriores, na solução do problema de escoamento de um material granular entre placas paralelas. / [en] The aim of this work is to establish an axiomatic theoretical model, for description of the thermomechanical behavior of granular materials, based on a simple physical description of what mean granular materials. On the first chapter, it s make an overview of the acctual state of the arte, giving the real importance of the study of granular materials. On the second chapter, by using an axiomatic method, the balances equations for thermomechanical behavior of granular materials, was established. On the the III, by using another axiomatic method, some boundary condictions for granular materials, was analysed. On the chapter IV, by using a coceptual model for internal constraints, some internal constraints for granular materials, was exemplified. At least, on chapter V, the theoretical backgoung established in the previous chapter, is applied to solve the problem of granular flow between two parallel plates.
|
23 |
Structure preserving and fast spectral methods for kinetic equationsXiaodong Huang (11768345) 03 December 2021 (has links)
This dissertation consists of three research projects of kinetic models: a structure preserving scheme for Poisson-Nernst-Planck equations and two efficient spectral methods
for multi-dimensional Boltzmann equation.<br><br>The Poisson-Nernst-Planck (PNP) equations is widely used to describe the dynamics
of ion transport in ion channels. We introduce a structure-preserving semi-implicit finite
difference scheme for the PNP equations in a bounded domain. A general boundary condition
for the Poisson equation is considered. The fully discrete scheme is shown to satisfy the
following properties: mass conservation, unconditional positivity, and energy dissipation
(hence preserving the steady-state).
<br><br>Numerical approximation of the Boltzmann equation presents a challenging problem due
to its high-dimensional, nonlinear, and nonlocal collision operator. Among the deterministic
methods, the Fourier-Galerkin spectral method stands out for its relative high accuracy and
possibility of being accelerated by the fast Fourier transform. In this dissertation, we studied
the state of the art in the fast Fourier method and discussed its limitation. Next, we proposed
a new approach to implement the Fourier method, which can resolve those issues. <br><br>However, the Fourier method requires a domain truncation which is unphysical since
the collision operator is defined in whole space R^d
. In the last part of this dissertation, we
introduce a Petrov-Galerkin spectral method for the Boltzmann equation in the unbounded
domain. The basis functions (both test and trial functions) are carefully chosen mapped
Chebyshev functions to obtain desired convergence and conservation properties. Furthermore, thanks to the close relationship of the Chebyshev functions and the Fourier cosine
series, we can construct a fast algorithm with the help of the non-uniform fast Fourier transform (NUFFT).<br>
|
24 |
Direct Simulation Monte Carlo and Granular GasesAndrew Hong (12619576) 28 July 2022 (has links)
<p>Granular systems are ensembles of inelastic particles which dissipate energy during collisions. Granular systems serve as excellent models for a wide variety of materials such as sand, soils, corn, and powder. A rather remarkable property of granular systems is when excited, whether due to an interstitial fluid or via the boundaries, the granular particlesdisplay fluid-like behavior. As a result, there has been decades of granular research with the overarching goal of formulating a general granular hydrodynamic theory.</p>
<p>However, the granular hydrodynamic theory is limited, and the underlying transport coefficients often require modifications which are based on empirical observations, and assuch, are system-specific. It is ideally better to devise a general theory which minimizes the information needed about the systema priori. The main thrust of the work undertaken shown here strives to develop such a model by using kinetic theory as the basis. More specifically, I investigate granular gases via the direct simulation Monte Carlo (DSMC) methodand modify the governing equations. In this thesis, two idealized cases of granular gases areconsidered: the homogeneous cooling state and a boundary-heated gas (or the pure conduc-tion case). In the former, the effects of polydispersity are probed. In the latter, the evolutionof the local hydrodynamics due to strong rarefaction effects are divulged. Additionally, amodified, more generalized constitutive relation for the heat flux is proposed and comparedwith DSMC results. Extensions of the DSMC method for dense granular gases and granulargases composed of non-spherical particles are also discussed.</p>
|
25 |
Determination of the granular flow and pyrolysis parameters of wood pellets in a pilot-scale rotary kiln pyrolizerRivera Gómez, Enrique January 2024 (has links)
This thesis project investigates the granular flow of wood pellets inside a pilot-scale rotary kiln and its impact on the pyrolysis process. The study focuses on two key factors that must be determined to evaluate their effects on pyrolysis: the mass flow rate delivered by the feeding system at different motor frequencies and the mean residence time (MRT) of the wood pellets. The research is divided into two parts: the first characterizes granular flow without heat application, while the second examines the system behavior under high-temperature pyrolysis conditions. For the first part, the mass flow rate was assessed by measuring the emptying time of the feeding silo at different screw velocities. In contrast, the MRT was determinedwith two scenarios: (1) batches of different masses of wood pellets and (2) continuousfeed until a stable solid bed was formed that allowed tracer particle tracking. In the second part of the study, the drum’s rotational speed and fed mass flow rate were varied. Results indicated a direct proportionality between the mass flow rate delivered by the feeding systems and the screw motor frequency. Additionally, the MRT was found to follow an inverse relation with the drum’s rotational speed if the process was done in batches. In contrast, the MRT was 20 minutes at a feeding rate of 51 kg h-1 and a drum’s rotational speed of 0.36 rad s -1 with a continuous feeding process. Finally, the study concludes that the wood pellet feed rate and drum rotational speed significantly influence the pyrolysis process in the rotary kiln. The system remained stable for wood pellets inside the rotary drum, starting with a feeding rate of 8 kg h-1 and scaling up until a maximum of 21 kg h-1. This behavior is evidenced by the direct proportionality between the evolution of flue gas and pyrolysis gas temperatures over time and the necessity to adjust air supply to maintain system stability.
|
26 |
Effondrement granulaire : couplages fluide-grainsRondon, Loic 14 October 2011 (has links)
Nous étudions expérimentalement l'effondrement d'une colonne granulaire dans un liquide visqueux. Contrairement au cas sec, la morphologie des dépôts n'est principalement plus contrôlée par le rapport d'aspect initial du tas mais par la fraction volumique initiale de la masse granulaire. Deux régimes différents sont identifiés selon l'empilement initial. L'empilement lâche donne lieu à des dépôts minces et longs et la dynamique est rapide. Une surpression du liquide est mesurée sous de la colonne. Pour l'empilement dense, l'étalement final est deux fois moindre, le mouvement est lent et une dépression interstitielle est mesurée. Ces observations suggèrent que la dynamique de l'effondrement granulaire dans un fluide est fortement affectée par le comportement de la dilatance du milieu granulaire.Nous développons ensuite un modèle théorique basé sur des équations diphasiques moyennées dans l’épaisseur prenant en compte les mécanismes de dilatance. L’étude dimensionnelle de notre modèle permet de montrer que l’effondrement d’une colonne est contrôlé par trois paramètres sans dimension : le rapport d’aspect de la colonne, la fraction volumique initiale, et le nombre de grains dans l’épaisseur. On montre également que le temps caractéristique met en compétition le frottement visqueux et la gravité.De ce modèle, nous développons un algorithme de résolution lagrangien. Cette approche, grossière mais robuste, permet d’implanter s sans trop de difficulté. Le code est validé sur des configurations simples sur plan incliné avant de simuler l’effondrement de colonnes granulaires immergées dans la même gamme de paramètres que nos expériences. / Nous étudions expérimentalement l'effondrement d'une colonne granulaire dans un liquide visqueux. Contrairement au cas sec, la morphologie des dépôts n'est principalement plus contrôlée par le rapport d'aspect initial du tas mais par la fraction volumique initiale de la masse granulaire. Deux régimes différents sont identifiés selon l'empilement initial. L'empilement lâche donne lieu à des dépôts minces et longs et la dynamique est rapide. Une surpression du liquide est mesurée sous de la colonne. Pour l'empilement dense, l'étalement final est deux fois moindre, le mouvement est lent et une dépression interstitielle est mesurée. Ces observations suggèrent que la dynamique de l'effondrement granulaire dans un fluide est fortement affectée par le comportement de la dilatance du milieu granulaire.Nous développons ensuite un modèle théorique basé sur des équations diphasiques moyennées dans l’épaisseur prenant en compte les mécanismes de dilatance. L’étude dimensionnelle de notre modèle permet de montrer que l’effondrement d’une colonne est contrôlé par trois paramètres sans dimension : le rapport d’aspect de la colonne, la fraction volumique initiale, et le nombre de grains dans l’épaisseur. On montre également que le temps caractéristique met en compétition le frottement visqueux et la gravité.De ce modèle, nous développons un algorithme de résolution lagrangien. Cette approche, grossière mais robuste, permet d’implanter s sans trop de difficulté. Le code est validé sur des configurations simples sur plan incliné avant de simuler l’effondrement de colonnes granulaires immergées dans la même gamme de paramètres que nos expériences.
|
27 |
Analysis Of Dense Sheared Granular FlowsReddy, Katha Anki 03 1900 (has links)
A granular material is a collection of discrete, solid particles of macroscopic size dispersed in an interstitial fluid, in which the fluid has an insignificant effect on the particle dynamics. Because they exhibit fascinating properties because of dissipative interactions, due to their importance in geophysical and industrial processes, flows of granular materials have been the focus of large amount of research involving physicists and engineers. A good understanding of the physics of granular materials is desired in order to design efficient processing and handling systems. Granular materials can be heaped like a solid, and can flow like a fluid. Though the two distinct regimes of granular flows are well described by kinetic theory (rapid flows) and plasticity theories (quasi-static), the intermediate dense flow regime, where collisional and frictional interactions are important, is not yet described successfully. In this thesis, we examine the applicability of kinetic theory for dense granular flows, the structure and dynamics in sheared inelastic hard disks systems and dynamics of sheared non-spherical particles.
Two complementary simulation techniques, the discrete element (DE) technique for soft particles and the event driven (ED) simulation technique for hard particles, are used to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model when the particle stiffness becomes large. First, we examine the average co-ordination number for the particles in the flow down an inclined plane using the DE technique using both linear and Hertzian contact models. The simulations show that the average co-ordination number decreases below 1 for values of the spring stiffness corresponding to real materials such as sand and glass, even when the angle of inclination is only 1olarger than the angle of repose. The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are found to be in quantitative agreement. In addition, we also conduct the comparison of the pre-collisional relative velocities of particles in contact. Since momentum is transported primarily by particle contacts in a dense flow, the relative velocity distribution is a sensitive comparison of the dynamics in the two simulation techniques. It is found that the relative velocity distribution in both simulation techniques are well approximated by an exponential distribution for small coefficients of restitution, indicating that the dynamics of a dense granular flow can be adequately described by a hard particle model.
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analysed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analysed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analysed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.
The orientational ordering and dynamical properties of the shear flow of inelastic dumbbells in two dimensions are studied, as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are smooth fused disks characterised by the ratio of the distance between centers (L) and the disk diameter (D), and the ratio (L/D)varies between 0 and 1 in our simulations. Area fractions studied are in the range 0.1 to 0.7, while coefficients of normal restitution from 0.99 to 0.6 are considered. The simulations are similar to the event driven simulations for circular disks, but the procedure for predicting collisions is much more complicated due to the non-circular shape of the particles and due to particle rotation. The average orientation is measured using an orientational order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axis of all dumbbells in the same direction). It is found that there is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased, and the order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. However, there is no discontinuous nematic transition for all the parameters studied here. The axis of the dumbbells are preferentially oriented along the extensional axis (at an angle of 45ofrom the flow direction) at low area fraction, but the orientation is closer to the flow direction as the area fraction is increased. The orientation distribution is calculated, and it is found that the orientation distribution is well described by a function of the form P(θ) =(1/π)+ (2S/π)cos(2(θ−θp)), where θis the angle from the flow direction and θpis the principal orientation direction. The mean energy of the velocity fluctuations in the flow direction is found to be higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocity are found to be Gaussian distributions to a very good approximation. The equation of state for the pressure is calculated, and it is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation even at the lowest area fractions studied here. The mean angular velocity of the particles is examined in some detail. It is found that the mean angular velocity is equal to half the vorticity at low area fractions, but the magnitude of the mean angular velocity systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.
|
28 |
Modélisation numérique de l'interaction d'un écoulement de fluide viscoplastique avec un obstacle rigide par la méthode SPH : Application aux laves torrentielles / Numerical modelling of the interaction between a viscoplastic fluid and a rigid obstacle, using the SPH method. Application to debris flows.Labbé, Mathieu 20 March 2015 (has links)
Dans le présent travail, nous étudions l'impact sur un obstacle rigide d'un écoulement transitoire à surface libre de fluide viscoplastique. Cette étude est conduite numériquement à l'aide de la méthode SPH (Smoothed Particle Hydrodynamics), en y intégrant le modèle rhéologique de Herschel-Bulkley. Le code employé est adapté à nos besoins et validé sur des cas test classiques. Les caractéristiques locales de l'écoulement à proximité de l'obstacle sont analysées et deux régimes d'impact sont mis en évidence en fonction de la pente d'écoulement. L'étude des pressions exercées sur l'obstacle, conduite spatialement et temporellement en fonction de ces régimes d'impact, nous permet de mettre en évidence les rôles respectifs des composantes gravitationnelle et cinétique de la pression. Nos résultats sont comparés systématiquement à des résultats expérimentaux issus de travaux précédents et sont cohérents avec ces derniers. Une étude comparative de nos écoulements de fluide viscoplastique avec des écoulements de matériau granulaires de propriétés similaires nous conduit à mettre en évidence des caractéristiques communes entre les deux matériaux. / In this work, we study the impact of a transient free-surface flow of viscoplastic fluid on a rigid obstacle. This study is conducted numerically using the SPH (Smoothed Particle Hydrodynamics) method, and the Herschel-Bulkley rheological model. The SPH code is adapted to our needs and validated on classic benchmarks. The local characteristics of the flow near the obstacle are analysed and two impact regimes are highlighted depending on the slope angle. By studying of the pressure exerted on the obstacle, both spatially and temporally, with regards to these impact regimes, we evidence the respective roles of the gravitational and kinetic components of the pressure. Our results are systematically compared with experimental data from a previous work and are shown to be consistent. A comparative study conducted on both our viscoplastic flows and flows of granular material of similar properties highlights common characteristics of the two materials.
|
29 |
Modélisation numérique de l'interaction d'un écoulement de fluide viscoplastique avec un obstacle rigide par la méthode SPH : Application aux laves torrentielles / Numerical modelling of the interaction between a viscoplastic fluid and a rigid obstacle, using the SPH method. Application to debris flows.Labbé, Mathieu 20 March 2015 (has links)
Dans le présent travail, nous étudions l'impact sur un obstacle rigide d'un écoulement transitoire à surface libre de fluide viscoplastique. Cette étude est conduite numériquement à l'aide de la méthode SPH (Smoothed Particle Hydrodynamics), en y intégrant le modèle rhéologique de Herschel-Bulkley. Le code employé est adapté à nos besoins et validé sur des cas test classiques. Les caractéristiques locales de l'écoulement à proximité de l'obstacle sont analysées et deux régimes d'impact sont mis en évidence en fonction de la pente d'écoulement. L'étude des pressions exercées sur l'obstacle, conduite spatialement et temporellement en fonction de ces régimes d'impact, nous permet de mettre en évidence les rôles respectifs des composantes gravitationnelle et cinétique de la pression. Nos résultats sont comparés systématiquement à des résultats expérimentaux issus de travaux précédents et sont cohérents avec ces derniers. Une étude comparative de nos écoulements de fluide viscoplastique avec des écoulements de matériau granulaires de propriétés similaires nous conduit à mettre en évidence des caractéristiques communes entre les deux matériaux. / In this work, we study the impact of a transient free-surface flow of viscoplastic fluid on a rigid obstacle. This study is conducted numerically using the SPH (Smoothed Particle Hydrodynamics) method, and the Herschel-Bulkley rheological model. The SPH code is adapted to our needs and validated on classic benchmarks. The local characteristics of the flow near the obstacle are analysed and two impact regimes are highlighted depending on the slope angle. By studying of the pressure exerted on the obstacle, both spatially and temporally, with regards to these impact regimes, we evidence the respective roles of the gravitational and kinetic components of the pressure. Our results are systematically compared with experimental data from a previous work and are shown to be consistent. A comparative study conducted on both our viscoplastic flows and flows of granular material of similar properties highlights common characteristics of the two materials.
|
30 |
Rhéologie et contrôle des écoulements de dispersions granulaires par l'application de vibrations / Rheology and flow control of granular dispersions by applying vibrationsGaudel, Naïma 13 November 2018 (has links)
Ce travail est financé par le fond européen Interreg VA (projet "PowderReg"). L'optimisation du transport, du stockage et du mélange des dispersions granulaires passe par le contrôle de leur écoulement, par exemple en ajoutant des vibrations mécaniques. Ce travail permet d'apporter une meilleure compréhension de l'influence des vibrations sur la rhéologie apparente de dispersions granulaires modèles dans le régime quasi-statique. Des travaux expérimentaux et numériques sont réalisés afin de sonder les modifications de la dynamique locale ainsi que les hétérogénéités qui apparaissent lors de leur mise en écoulement. Deux géométries présentant des intérêts fondamentaux, géophysiques et industriels sont étudiées : la cellule de type Couette et le plan incliné. Dans un premier temps, des mesures iso-indice couplées à de la fluorescence induite par laser ont été réalisées sur des suspensions granulaires dans une cellule de type Couette sous vibrations. Les vibrations rendent la rhéologie locale en homogénéisant le système. Elles suppriment la contrainte seuil apparente et font apparaître un plateau Newtonien à bas gradient, intrinsèque à la dynamique locale qui est de nature diffusive. Il est apparu que le temps de réarrangement des particules, dépendant de l'intensité des vibrations, est relié au volume libre disponible autour de chaque particule. L'étude numérique de cette géométrie dans le cas d'une dispersion granulaire sèche a mis en évidence des résultats similaires. Dans un second temps, des écoulements de dispersions de grains secs sur un plan incliné vibrant ont été réalisés. Des travaux numériques sur cette même géométrie ont permis d'enrichir cette étude. Les résultats mettent en évidence l'existence de deux régimes sous vibrations. Le comportement dans le régime dominé par la gravité n'est pas influencé par les vibrations, et un profil de Bagnold est observé. Les vibrations permettent principalement de baisser la friction basale, influant alors la hauteur des dépôts. Dans le régime dominé par les vibrations, les écoulements sont déclenchés par les vibrations elles-mêmes. Il est apparu qu'elles induisent des fluctuations de vitesses, qui créées alors une température granulaire. Cette température permet d'activer les réorganisations à l'échelle de la particule, éliminant le seuil apparent responsable du blocage des écoulements et permettant leur contrôle au travers du taux de cisaillement / This work is funded by the European Founds Interreg VA ("PowderReg" project). The optimization of the transport, storage and mixture of granular dispersions involves their flow control, by adding mechanical vibrations, for example. The present work enables a better understanding of the influence of the vibrations on the apparent rheology of model granular dispersions in the quasi-static regime. Experimental and numerical studies were carried out in order to probe the modifications of the local dynamic and heterogeneities that appear during the flow. Two geometries, interesting for diverse applications in fundamental science, geophysics and industries, were studied: the Couette cell geometry and the inclined plane. In the first step, refractive-index matching technique, coupled to the planar laser induced fluorescence was used to make measurements in granular suspensions in a vibrated Couette cell geometry. Vibrations make the rheology local by homogenizing the system. They suppress the yield stress and result in the appearance of a Newtonian plateau at the low shear, intrinsic to the local dynamic, which is diffusive in nature. It appears that the rearrangement time of the particles, depending on the intensity of the vibrations, is linked to a free volume available around each particle. The numerical study of this geometry in the case of a dry granular dispersion shows similar results. In the second step, flows of dry granular dispersions down the inclined and vibrated plane were realized. This study was completed with a numerical work. The results demonstrated the existence of two distinct regimes under vibrations. The behavior in the gravity-driven regime is not affected by the vibrations and a Bagnold profile is observed. The vibrations mainly cause the decrease of the basal friction and thus influence the height of the deposits. In the vibration-driven regime, however, flows are triggered by the vibrations themselves. It appears that they induce velocity fluctuations that create a granular temperature. That temperature allows the activation of the reorganizations at the grain scale. This suppresses the apparent yield responsible for the flow jamming, and thus enables their control through the shear rate
|
Page generated in 0.0779 seconds