Spelling suggestions: "subject:"gravité quantique"" "subject:"gravité quantiques""
31 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesureTriestino, Michele 21 May 2014 (has links) (PDF)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type " Haar " pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire.
|
32 |
Colored discrete spaces : Higher dimensional combinatorial maps and quantum gravity / Espaces discrets colorés : Cartes combinatoires en dimensions supérieures et gravité quantiqueLionni, Luca 08 September 2017 (has links)
On considère, en deux dimensions, une version euclidienne discrète de l’action d’Einstein-Hilbert, qui décrit la gravité en l’absence de matière. À l’intégration sur les géométries se substitue une sommation sur des surfaces triangulées aléatoires. Dans la limite physique de faible gravité, seules les triangulations planaires survivent. Leur limite en distribution, la carte brownienne, est une surface fractale continue dont l’importance dans le contexte de la gravité quantique en deux dimensions a été récemment précisée. Cet espace est interprété comme un espace-temps quantique, obtenu comme limite à grande échelle d’un ensemble statistique de surfaces discrètes aléatoires. En deux dimensions, on peut donc étudier les propriétés fractales de la gravité quantique via une approche discrète. Il est bien connu que les généralisations directes en dimensions supérieures échouent à produire des espace-temps quantiques aux propriétés adéquates : en dimension D>2, la limite en distribution des triangulations qui survivent dans la limite de faible gravité est l’arbre continu aléatoire, ou polymères branchés en physique. Si en deux dimensions on parvient aux mêmes conclusions en considérant non pas des triangulations, mais des surfaces discrètes aléatoires obtenues par recollements de 2p-gones, nous savons depuis peu que ce n’est pas toujours le cas en dimension D>2. L’apparition de nouvelles limites continues dans le cadre de théories de gravité impliquant des espaces discrets aléatoires reste une question ouverte. Nous étudions des espaces obtenus par recollements de blocs élémentaires, comme des polytopes à facettes triangulaires. Dans la limite de faible gravité, seuls les espaces qui maximisent la courbure moyenne survivent. Les identifier est cependant une tâche ardue dans le cas général, pour lequel les résultats sont obtenus numériquement. Afin d’obtenir des résultats analytiques, une coloration des (D-1)-cellules, les facettes, a été introduite. En toute dimension paire, on peut trouver des familles d’espaces discrets colorés de courbure moyenne maximale dans la classe d’universalité des arbres – convergeant vers l’arbre continu aléatoire, des cartes planaires – convergeant vers la carte brownienne, ou encore dans la classe de prolifération des bébé-univers. Cependant, ces résultats sont obtenus en raison de la simplicité de blocs élémentaires dont la structure uni ou bidimensionnelle ne rend pas compte de la riche diversité des blocs colorés en dimensions supérieures. Le premier objectif de cette thèse est donc d’établir des outils combinatoires qui permettraient une étude systématique des blocs élémentaires colorés et des espaces discrets qu’ils génèrent. Le principal résultat de ce travail est l’établissement d’une bijection entre ces espaces et des familles de cartes combinatoires, qui préserve l’information sur la courbure locale. Elle permet l’utilisation de résultats sur les surfaces discrètes et ouvre la voie à une étude systématique des espaces discrets en dimensions supérieures à deux. Cette bijection est appliquée à la caractérisation d’un certain nombre de blocs de petites tailles ainsi qu’à une nouvelle famille infinie. Le lien avec les modèles de tenseurs aléatoires est détaillé. Une attention particulière est donnée à la détermination du nombre maximal de (D-2)-cellules et de l’action appropriée du modèle de tenseurs correspondant. Nous montrons comment utiliser la bijection susmentionnée pour identifier les contributions à un tout ordre du développement en 1/N des fonctions à 2n points du modèle SYK coloré, et appliquons ceci à l’énumération des cartes unicellulaires généralisées – les espaces discrets obtenus par recollement d’un unique bloc élémentaire – selon leur courbure moyenne. Pour tout choix de blocs colorés, nous montrons comment réécrire la théorie d’Einstein-Hilbert discrète correspondante comme un modèle de matrices aléatoires avec traces partielles, dit représentation en champs intermédiaires. / In two dimensions, the Euclidean Einstein-Hilbert action, which describes gravity in the absence of matter, can be discretized over random triangulations. In the physical limit of small Newton's constant, only planar triangulations survive. The limit in distribution of planar triangulations - the Brownian map - is a continuum fractal space which importance in the context of two-dimensional quantum gravity has been made more precise over the last years. It is interpreted as a quantum continuum space-time, obtained in the thermodynamical limit from a statistical ensemble of random discrete surfaces. The fractal properties of two-dimensional quantum gravity can therefore be studied from a discrete approach. It is well known that direct higher dimensional generalizations fail to produce appropriate quantum space-times in the continuum limit: the limit in distribution of dimension D>2 triangulations which survive in the limit of small Newton's constant is the continuous random tree, also called branched polymers in physics. However, while in two dimensions, discretizing the Einstein-Hilbert action over random 2p-angulations - discrete surfaces obtained by gluing 2p-gons together - leads to the same conclusions as for triangulations, this is not always the case in higher dimensions, as was discovered recently. Whether new continuum limit arise by considering discrete Einstein-Hilbert theories of more general random discrete spaces in dimension D remains an open question.We study discrete spaces obtained by gluing together elementary building blocks, such as polytopes with triangular facets. Such spaces generalize 2p-angulations in higher dimensions. In the physical limit of small Newton's constant, only discrete spaces which maximize the mean curvature survive. However, identifying them is a task far too difficult in the general case, for which quantities are estimated throughout numerical computations. In order to obtain analytical results, a coloring of (D-1)-cells has been introduced. In any even dimension, we can find families of colored discrete spaces of maximal mean curvature in the universality classes of trees - converging towards the continuous random tree, of planar maps - converging towards the Brownian map, or of proliferating baby universes. However, it is the simple structure of the corresponding building blocks which makes it possible to obtain these results: it is similar to that of one or two dimensional objects and does not render the rich diversity of colored building blocks in dimensions three and higher.This work therefore aims at providing combinatorial tools which would enable a systematic study of the building blocks and of the colored discrete spaces they generate. The main result of this thesis is the derivation of a bijection between colored discrete spaces and colored combinatorial maps, which preserves the information on the local curvature. It makes it possible to use results from combinatorial maps and paves the way to a systematical study of higher dimensional colored discrete spaces. As an application, a number of blocks of small sizes are analyzed, as well as a new infinite family of building blocks. The relation to random tensor models is detailed. Emphasis is given to finding the lowest bound on the number of (D-2)-cells, which is equivalent to determining the correct scaling for the corresponding tensor model. We explain how the bijection can be used to identify the graphs contributing at any given order of the 1/N expansion of the 2n-point functions of the colored SYK model, and apply this to the enumeration of generalized unicellular maps - discrete spaces obtained from a single building block - according to their mean curvature. For any choice of colored building blocks, we show how to rewrite the corresponding discrete Einstein-Hilbert theory as a random matrix model with partial traces, the so-called intermediate field representation.
|
33 |
Géométrie du champ libre Gaussien en relation avec les processus SLE et la formule KPZ / The geometry of the Gaussian free field combined with SLE processes and the KPZ relationAru, Juhan 10 July 2015 (has links)
Cette thèse porte sur la géométrie du champ libre Gaussien. Le champ libre Gaussien est un objet central en théorie quantique des champs et représente entre autre les fluctuations naturelles d'un potentiel électrique ou d’un modèle de dimères. La thèse commence dans le discret avec la démonstration d'un principe de Donsker en dimension plus grande que 1. Ce résultat est établi grâce à une nouvelle façon de représenter le champ libre en exprimant son gradient comme la partie gradient d'un champ de bruits blancs. Ensuite, les processus d'exploration du champ libre - ou ensembles locaux - introduits par Schramm-Sheffield sont étudiés en détail. Ces ensembles locaux généralisent de façon naturelle le concept de temps d'arrêt. On formalise cette théorie d'une nouvelle manière en procédant par analogie au cas 1D. Pour mieux comprendre le comportement du champs libre près des points d'intersection des ensembles locaux, un étude fine des oscillations du champ libre 2D près du bord s'avère utile. Enfin, la partie principale de cette thèse étudie des processus d'explorations particuliers – les processus SLE qui sont couplés naturellement avec le champ libre. On peut donner par exemple un sens aux lignes de niveau en utilisant le processus SLE_4 (Schramm-Sheffield). Nous avons utilisé ce couplage pour mieux comprendre la relation dite de KPZ qui intervient dans la théorie de la gravité quantique de Liouville. A l ‘aide de résultats fins sur l’enroulement des SLEs, nous avons montré comment adapter la relation de KPZ à la famille ci-dessus de processus d’explorations du champ libre. On peut interpréter ces résultats aussi comme une description de la géométrie du champ libre près des ces lignes d’exploration. / In this thesis we study the geometry of the Gaussian free field (GFF). After a gentle general introduction, we describe what we call the Hodge decomposition of the white noise – a way to represent the white noise vector field as a sum of a gradient and a rotation of independent GFFs. This decomposition gives rise to the Donsker invariance principle for the GFF.Next, we revisit from a slightly different angle the theory of so-called local sets of the GFF, introduced by Schramm and Sheffield. These random sets allow one to study the geometry of the GFF in a Markovian way. We also go a step further in describing the behaviour of the field near the boundary of possibly several local sets. The first chapter ends with a study of boundary oscillations of the GFF.The GFF is only a generalized function, yet it comes out that one can still make sense of it as a „random landscape“. In particular, Schramm and Sheffield gave meaning to the level lines of the GFF in terms of a coupling with SLE_4 process. In chapter 2 we study this coupling and describe the existent proofs and a non-proof of measurability of the SLE_4 process in this coupling. The rest of this chapter contains one of the most technical parts of the thesis – we obtain fine estimates on the winding of the SLE curves, conditioned to pass closely by a fixed point.This technical work is put in use in chapter 3, where we study the so called KPZ relation. In this context, the KPZ formula relates fractal dimensions of sets under the Euclidean geometry and under the „quantum geometry“ given by the exponential of the GFF. So far the KPZ formula was derived for planar sets independent of the quantum geometry. Here, we determine the KPZ formulas for sets that are naturally coupled with the quantum geometry – for the flow and level lines of the GFF. The family of KPZ formulas obtained resemble but still differ from the KPZ formula for independent sets.
|
34 |
Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions / Symétries et lois de conservation en théorie de jauge Lagrangiennes avec applications à la mécanique des trous noirs et à la gravité à trois dimensionsCompère, Geoffrey 12 June 2007 (has links)
In a preamble, a quick summary of the line of thought from Noether's theorems to modern views on conserved charges in gauge theories is attempted. Most of the background material needed for the thesis is set out through a small survey of the literature. Emphasis is put on the concepts more than on the formalism, which is relegated to the appendices.<p><p>The treatment of exact conservation laws in Lagrangian gauge theories constitutes the main axis of the first part of the thesis. The formalism is developed as a self-consistent theory but is inspired by earlier works, mainly by cohomological results, covariant phase space methods and by the Hamiltonian formalism.<p>The thermodynamical properties of black holes, especially the first law, are studied in a general geometrical setting and are worked out for several black objects: black holes, strings and rings. Also, the geometrical and thermodynamical properties of a new family of black holes with closed timelike curves in three dimensions are described.<p><p><p>The second part of the thesis is the natural generalization of the first part to asymptotic analyses. We start with a general construction of covariant phase spaces admitting asymptotically conserved charges. The representation of the asymptotic symmetry algebra by a covariant Poisson bracket among the conserved charges is then defined and is shown to admit generically central extensions. The asymptotic structures of three three-dimensional spacetimes are then studied in detail and the consequences for quantum gravity in three dimensions are discussed. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
35 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesure / The dynamics of the generic circle diffeomorphism (with respect to the measure)Triestino, Michele 21 May 2014 (has links)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type « Haar » pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire. / This thesis is divided into three different parts.In the first part, we study the Malliavin-Shavgulidze measure on circle and interval diffeomorphisms. They are Haar-like measures for these infinite-dimensional groups: they were introduced about twenty years ago to help to study their represantation theory. The first chapter collects the results that were obtained in the past years and in some cases we present them under a renewed point of view, with particular attention on quasi-invariance properties for this measures. Then we study some questions of dynamical nature: which is the typical dynamics that we must expect described by a diffeomorphism chosen randomly according to some Malliavin-Shavguldize measure? In particular, we prove that there is a strong presence of Morse-Smale diffeomorphisms.The third chapter comes from the published joint work with Andrés Navas. Inspired by a recent theorem by Avila and Kocsard about the uniqueness of the invariant distribution for a minimal smooth circle diffeomorphism, we analyse the same problem in low regularity, with more geometric arguments.The last part corresponds to the recent results obtained with Mikhail Khristoforov and Victor Kleptsyn. We consider problems in relation with Liouville quantum gravity, by studying self-similar metric spaces which are the limit of finite graphs. We prove that it is possible to find nontrivial random distances on these spaces which are compatible with the self-similar structure.
|
Page generated in 0.39 seconds