• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires / Contribution to the study of Boltzmann's, Kac's and Keller-Segel's equations with non-linear stochastic differentials equations

Godinho Pereira, David 25 November 2013 (has links)
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré `a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules) / This thesis is devoted to the study of the asymptotic of grazing collisions for Kac's and Boltzmann's equations and to the study of the chaos propagation for some sub-critical Keller-Segel equation with non-linear Stochastic Differentials Equations. The first chapter is devoted to the Kac equation with a Maxwellian potential. We start by giving an explicit rate of convergence (than we believe to be optimal) for the asymptotic of grazing collisions. Then, we approximate the solution of Kac's equation in the general case, which allows us to show the chaos propagation for some particle system to this last one in a quantitative way. In the second chapter, we study the asymptotic of grazing collisions for the Boltzmann equation with soft and Coulomb potentials. We also give explicit rates of convergence (which are not optimal).Finally in the third and last chapter, we show the chaos propagation for some sub-critical Keller-Segel equation. To this aim, we use compactness arguments (tightness of the particle system)
2

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau / Asymptotic theorems for Boltzmann and Landau equations

Carrapatoso, Kléber 09 December 2013 (has links)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau. / This thesis is concerned with kinetic theory and many-particle systems in the setting of Boltzmann and Landau equations. Firstly, we study the derivation of kinetic equation as mean field limits of many-particle systems, using the concept of propagation of chaos. More precisely, we study chaotic probabilities on the phase space of such particle systems : the Boltzmann's sphere, which corresponds to the phase space of a many-particle system undergoing a dynamics that conserves momentum and energy ; and the Kac's sphere, which corresponds to the energy conservation only. Then we are concerned with the propagation of chaos, with quantitative and uniform in time estimates, for Boltzmann and Landau equations. Secondly, we study the long-time behaviour of solutions to the Landau equation.

Page generated in 0.067 seconds