• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Level-set RANS method for sloshing and green water simulations

Yu, Kai 15 May 2009 (has links)
An interface-preserving level set method is incorporated into the Reynolds- Averaged Navier-Stokes (RANS) numerical method for the time-domain simulation of green water effects. This generalized method can be used to evaluate two- and three-dimensional, laminar and turbulent, free surface flows in moving non-orthogonal grids. In the method, free surface flows are modeled as immiscible two-phase (air and water) flows. A level set function is used to mark the individual fluids and the free surface itself is represented by the zero level set function. The level set evolution equation is coupled with the conservation equations for mass and momentum, and solved in the transformed plane. Chimera domain decomposition technique is employed to handle embedding, overlapping, or matching grids. To demonstrate the feasibility of the method, calculations are performed in several bench mark free surface flows including dam break flows, free jets, solitary wave propagations and the impingement of dam break flow on a fixed structure. The comparisons between the simulations and the experimental data provide a thorough validation of the present method. The results also show the potential capability of level-set RANS method in much more complicated free surface flow simulations. After validations, the method is applied to simulate sloshing flows in LNG tank and green water over the platform. In sloshing flows, the level-set RANS method captures the large impact pressure accurately on LNG tank walls. It also generates a plunging breaker successfully in front of a platform in the numerical wave tank. The good agreements between numerical and experimental results prove the level set RANS method is a powerful and accurate CFD methodology in free surface flow simulations.
2

Computational Fluid Dynamics Simulation of Green Water Around a Two-dimensional Platform

Zhao, Yucheng 2009 December 1900 (has links)
An interface-preserving level set method is incorporated into the Reynolds-Averaged Navier-Stokes (RANS) numerical method to simulate the application of the green water phenomena around a platform and the breaking wave above the deck. In the present study, this method is used to evaluate the laminar in two dimension plane with fixed orthogonal grids. In this method, it is assumed that the free surface is modeled as immiscible two-phase flow (air and water). A level set function can present the individual fluids, and the interface between two-phase is represented by the zero level set. In addition, the level set evolution equation is coupled with the conservation equations for mass and momentum, which will be solved in the transformed plane. For different purposes, there are several block domains in the application grid. Chimera domain decomposition technique is employed to handle such embedding, overlapping, or matching grids. Several simple test cases were performed to demonstrate the feasibility of this method. The comparisons between the ENO scheme and the WENO scheme will be illustrated in the Zalesak's disk case and will further prove that the WENO scheme is superior to the ENO scheme. The propagation of continuous wave case will validate some properties of wave and determine the importance of some parameters in code. Moreover, the method will be applied in simulation of green water around a two dimensional platform. By configuring different deck heights, some distinct phenomena can be represented. Lastly, it is crucial to observe the green water phenomena around the platform deck by applying the velocity-extrapolation routine.
3

Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model Structure

Ariyarathne, Hanchapola Appuhamilage Kusalika Suranjani 2011 August 1900 (has links)
Flow kinematics of green water due to plunging breaking waves interacting with a simplified, three-dimensional model structure was investigated in laboratory. Two breaking wave conditions were tested: one with waves impinging and breaking on the vertical wall of the model at the still water level and the other with waves impinging and breaking on the horizontal deck surface. The incoming wave parameters were selected similar to observed wave parameters for the maximum wave height for Hurricane Ivan based on Froude scaling. The Bubble Image Velocimetry (BIV) technique was used to measure the flow velocity. Measurements were taken on a vertical plane located at the center of the deck surface and a horizontal plane located slightly above the deck surface. The evolution of green water flow kinematics in time and space is revealed in the study. The unsteady and non-uniform velocities were found to be quite different between the two wave conditions, even though the incoming waves are nearly identical. It was observed that the maximum velocity appears near the green water wave front and is 1.44C with C being the wave phase speed for the deck impingement case and 1.24C for wall impingement case. The velocity variations in the present study were compared with that in an earlier study using a two-dimensional model with the same wave condition as in the wall impingement condition. It was found that the magnitudes of the maximum vertical velocity is very different between these two models (1.7C in the 3D model versus 2.9C in the 2D model), whereas the magnitudes of the maximum horizontal velocity on the deck are very similar (1.2C in both 3D and 2D models). The applicability of dam-break theory on green water velocity prediction for the three-dimensional model was also investigated. It was found that the dam-break theory works very well in terms of predicting the maximum velocity, which is also the front velocity, but not the spatial distribution of the velocity on the deck. Furthermore, pressure measurements were performed at two vertical planes: one at the centre and the other at 0.05 m away from the centre. Ensemble averaged pressure variations were compared. Two types of pressure variations, impulsive type and non-impulsive type were observed. Impact pressure was successfully related to the pressure rising time. Void fraction was measured for few locations near the model front edge. Predictions of maximum impact pressure based on the measured pressure and flow velocity were investigated linking pressure with kinetic energy. Constant impact coefficient of 1.3 was found for wall impingement wave. However, for deck impingement wave, it was not possible to find a constant impact coefficient. It was also found that there is a linear relationship between the rising pressure gradient and the impact coefficient.
4

Level-set RANS method for sloshing and green water simulations

Yu, Kai 10 October 2008 (has links)
An interface-preserving level set method is incorporated into the Reynolds- Averaged Navier-Stokes (RANS) numerical method for the time-domain simulation of green water effects. This generalized method can be used to evaluate two- and three-dimensional, laminar and turbulent, free surface flows in moving non-orthogonal grids. In the method, free surface flows are modeled as immiscible two-phase (air and water) flows. A level set function is used to mark the individual fluids and the free surface itself is represented by the zero level set function. The level set evolution equation is coupled with the conservation equations for mass and momentum, and solved in the transformed plane. Chimera domain decomposition technique is employed to handle embedding, overlapping, or matching grids. To demonstrate the feasibility of the method, calculations are performed in several bench mark free surface flows including dam break flows, free jets, solitary wave propagations and the impingement of dam break flow on a fixed structure. The comparisons between the simulations and the experimental data provide a thorough validation of the present method. The results also show the potential capability of level-set RANS method in much more complicated free surface flow simulations. After validations, the method is applied to simulate sloshing flows in LNG tank and green water over the platform. In sloshing flows, the level-set RANS method captures the large impact pressure accurately on LNG tank walls. It also generates a plunging breaker successfully in front of a platform in the numerical wave tank. The good agreements between numerical and experimental results prove the level set RANS method is a powerful and accurate CFD methodology in free surface flow simulations.
5

The water footprint of selected crops within the Olifants/Doorn Catchment, South Africa

Manamathela, Sibongile Amelia January 2014 (has links)
>Magister Scientiae - MSc / Rapidly increasing global population is adding more pressure to the agricultural sector to produce more food to meet growing demands. However the sector is already faced with a challenge to reduce freshwater utilisation as this sector is currently using approximately 70% of global water freshwater resources. In South Africa, the agriculture sector utilizes approximately 62% of freshwater resources and contributes directly about5% to the Gross Domestic Product. South Africa is a water scarce country receiving less than 500mm/year of precipitation in most parts of the country, and consequently approximately 90% of the crops are grown under irrigation. Studies have evaluated irrigation practices and crop water use in the country. However information is lacking on the full impact of South African horticultural products on freshwater resources. The water footprint concept can be used to indicate the total and source (blue/green) of water used to produce the crops. Information about water footprint (WF) can be used for identifying opportunities to reduce the water consumption associated with production of vegetables and fruits at the field to farm- gate levels, including the more effective use of rainfall (green water) as opposed to water abstracted from rivers and groundwater (Blue water). It can also be used to understand water related risks associated with the production of crops and facilitate water allocation and management at catchment/water management scale. While the potential value of water footprint information is well recognized there is still inadequate knowledge on how best to determine the water footprints of various crops within a local context. The aim of this study was to determine the water footprint and the crop water productivity of navel oranges, pink lady apples and potatoes produced with the Olifant/Doorn water management area in South Africa.The water footprint of the navel oranges, pink lady apples and potatoes assessed following the water footprint network method was 125 litres/ kg, 108 litres/kg and 65 litres/ kg respectively. The study concluded that water footprint studies should be carried out on the whole catchment instead of one farm in order to assess the sustainability of the process.
6

Analys av blått och grönt vattenfotavtryck för nötkött från ICA:s sortiment / Analysis of blue and green water footprint for two types of beef from ICA

Magnusson, Simon January 2010 (has links)
ICA vill utveckla sitt miljöarbete i vattenfrågor. Denna rapport syftar till att öka medvetenheten hos ICA om verksamhetens miljöpåverkan genom att analysera vattenfotavtrycket – vanligen kallat Water Footprint – för ett livsmedel. Vattenfotavtryck är ett verktyg inom miljösystemanalys som används för att kartlägga sambandet mellan produktion och konsumtion av produkter och vattenanvändning. Studien visade att vattenfotavtrycken är ungefär 14 500 liter/kg och 16 500 liter/kg för svensk respektive irländsk nötfärs. Ursprunget till fodret samt vilka sorters vatten som används visade sig vara avgörande för vilka konsekvenser vattenfotavtryck ger upphov till. Utvärdering av de negativa konsekvenserna är en genomgående svårighet med vattenfotavtryck, en lösning kan vara att relatera vattenfotavtryck till den lokala vattenstressen samt hushållens vattenkonsumtion. / ICA is one of the leading companies in retail trade in northern Europe and is established in Sweden, Norway and the Baltic countries. ICA is interested in developing the business environmental management by taking into account water-related issues. The purpose of this study is to illuminate the link between company activities of ICA and water use, by applying the tool of water footprint. It is an environmental systems analysis tool that was developed by Professor Arjen Y. Hoekstra at University of Twente and the Water Footprint Network and it is mainly used to calculate the consumption of fresh water that is linked to the consumption of a product. The water footprint concept covers three different types of water; blue, green and grey water, where the green water is rain water, blue water is fresh water and groundwater, and grey water is a theoretical volume of water consumed as a consequence of emission of pollutants. In this study, the blue and green water footprint of Swedish and Irish minced beef has been analyzed. The results showed that the total water footprint of Swedish minced beef is about 14 500 liters per kg, of which about 14 200 liters is green water and 200 liters is blue water. About 98% of the water footprint is domestic since the majority of feed materials origins from Sweden. The total water footprint of Irish minced beef is about 16 500 liters per kg, of which about 15 000 liters is green water and 1 500 liters is blue water. Approximately 21 % of the total water footprint is external due to imports of water intense feed materials. Assessing the environmental and social impacts of the water footprint showed to be difficult because they are multidimensional. As an example, the consequences of a relatively small water footprint in countries with extremely scarce water may be severe, while a much larger water footprint in countries such as Sweden has a relatively small impact. In order to identify water footprints with the potential of causing major environmental and social impacts, data on regional water stress and water availability was used. For example, total household water consumption in water scarce Pakistan is about 58 liters per person and day, roughly 10 times lower compared to the U.S. This water is almost equivalent to the water footprint (52 liters per kg) in Pakistan caused by the production of Irish minced beef. The analysis section also showed that there are substantial difficulties in comparing water footprints of foods in order to identify products with minimum environmental impact. This has two main reasons: First, green water, i.e. evapotranspiration, is a part of the natural cycle of water which varies regionally. Secondly, foods are not always comparable, because different foods provide different nutrients. One solution would be to compare foods on the basis of a common denominator, e.g. animal based foods could be compared on the basis of protein content.
7

Modélisation de l’évolution hydroclimatique des flux et stocks d’eau verte et d’eau bleue du bassin versant de la Garonne / Modelling the hydroclimatic evolution of flow and stocks of green and blue water over the Garonne river watershed

Grusson, Youen 25 April 2016 (has links)
La gestion intégrée de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociétés de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu à l’autre. Il est possible de simplifier cette question en s’attardant plutôt aux deux destinations de l’eau. L’eau bleue forme les réserves et les flux dans l’hydrosystème : cours d’eau, nappes et écoulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphère. Elle inclut l’eau consommée par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intéressant généralement qu’au devenir des débits ou, plus rarement, à la recharge des nappes. Le portrait global est alors manquant. Dans un même temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de manière distincte les différents composants de cycle hydrologique. L’étude réalisée ici utilise l’outil de modélisation SWAT afin de réaliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystème du bassin versant de la Garonne. Une première partie du travail a permis d’affiner la mise en place du modèle pour répondre au mieux à la problématique posée. Un soin particulier a été apporté à l’utilisation de données météorologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramètres du modèle a été testé dans un contexte differential split sampling, en calant puis validant sur des années contrastées en terme climatique afin d’appréhender la robustesse de la simulation dans un contexte de changements climatiques. Cette étape a permis une amélioration substantielle des performances sur la période de calage (2000-2010) ainsi que la mise en évidence de la stabilité du modèle face aux changements climatiques. Par suite, des simulations sur une période d’un siècle (1960-2050) ont été produites puis analysées en deux phases : i) La période passée (1960-2000), basée sur les observations climatiques, a servi de période de validation à long terme du modèle sur la simulation des débits, avec de très bonnes performances. L’analyse des différents composants hydrologiques met en évidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbées au niveau du stock de neige et des débits qui présentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont été réalisées (2010-2050) en sélectionnant une gamme de scénarios et de modèles climatiques issus d’une mise à l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirées de la période passée : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la période estivale est telle qu’elle en vient à réduire les flux d’évapotranspiration réelle, mettant en évidence le possible déficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les débits semblent cette fois en hausse pendant l’automne et l’hiver. Ces résultats sont un signe de l’«accélération» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des évènements extrêmes de précipitation. Ce travail a permis de réaliser une analyse des variations de la plupart des composantes du cycle hydrologique à l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour évaluer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau. / Integrated water resource management requires distinction between water paths that are directly available for society and those which are not. Water pathways, from precipitation to the oceans or the atmosphere, are highly variable from one place to another. The complexity of water pathways can be simplified by focusing on two main categories of water resources: blue water, which is the stock and flow moving into the hydrosystem that is directly available (e.g. rivers, lakes, aquifers and groundwater flow), and green water, which is the invisible flow of water vapor leaving the hydrosphere to the atmosphere. The latter includes the water used by forests, grasslands, rain fed crops, and the water in soils. However, many hydrological studies focus only on blue water, particularly the discharge or more rarely the ground water recharge, ignoring all green water components, therefore missing the overall picture. At the same time, climate change highlighted in recent years have been found to impact water pathway distributions by affecting different components of the hydrological cycle at the watershed scale. The study presented here exploits the SWAT hydrological model to assess the variation of different components of a hydrosystem facing climate change. The study area is the watershed of the Garonne River, where data is available. The first part of this work focused on refining the implementation of the model in order to better tackle the problem at hand. Particular attention has been paid to the use of gridded weather data (SAFRAN product) as well as to the simulation of snow present in the mountainous portion of the watershed. Calibration of the model parameters was tested through a differential split sampling method, based on calibration and validation using climatically contrasted periods, in order to test the robustness of the model. These steps led to a substantial improvement in the simulations performance over the calibration period (2000-2010) and demonstrated the robustness of the model within a climate change context. The improved SWAT model was next used to produce simulations over a hundred-year period (1960-2050), an analysis carried out in two steps: First, the past period (1960-2000) simulation, based on observed climatic data, was used to validate discharge simulations for which very good performance was obtained. Analysis of the different components of the hydrological cycle showed a strong impact on flows and stocks of green water, with a reduction of the water content in soil and a substantial increase in evapotranspiration. Blue water is mostly impacted in terms of snow stock and discharge flow, which both showed a substantial decrease. Secondly, hydrological projections were performed (2010-2050) based on a selection of climate scenarios and models, submitted to dynamic downscaling. Analysis of these projections partly confirmed the conclusions drawn from the historic period: i.e. a substantial impact on green water, with a decrease of the soil water content and an increase of potential evapotranspiration. The projections also revealed that the soil water content during the summer season is such that it reduces the actual evapotranspiration, highlighting possible future deficits of green water stocks. Furthermore, if the analysis of blue water components always presented a substantial decrease in the snowpack, discharge appears to increase during autumn and winter periods. These results indicate an "acceleration" of blue surface water components which is likely related to an increase in extreme rainfall events. In this study, an analysis of the variation of the main hydrological cycle components have been proposed at a watershed scales, confirming the importance of taking into account all these components to evaluate the climate change impact and more broadly environmental changes on water resources.
8

Land Use, Freshwater Flows and Ecosystem Services in an Era of Global Change

Gordon, Line January 2003 (has links)
<p>The purpose of this thesis is to analyse interactions between freshwater flows, terrestrial ecosystems and human well-being. Freshwater management and policy has mainly focused on the liquid water part (surface and ground water run off) of the hydrological cycle including aquatic ecosystems. Although of great significance, this thesis shows that such a focus will not be sufficient for coping with freshwater related social-ecological vulnerability. The thesis illustrates that the terrestrial component of the hydrological cycle, reflected in vapour flows (or evapotranspiration), serves multiple functions in the human life-support system. A broader understanding of the interactions between terrestrial systems and freshwater flows is particularly important in light of present widespread land cover change in terrestrial ecosystems. </p><p>The water vapour flows from continental ecosystems were quantified at a global scale in Paper I of the thesis. It was estimated that in order to sustain the majority of global terrestrial ecosystem services on which humanity depends, an annual water vapour flow of 63 000 km3/yr is needed, including 6800 km3/yr for crop production. In comparison, the annual human withdrawal of liquid water amounts to roughly 4000 km3/yr. A potential conflict between freshwater for future food production and for terrestrial ecosystem services was identified. </p><p>Human redistribution of water vapour flows as a consequence of long-term land cover change was addressed at both continental (Australia) (Paper II) and global scales (Paper III). It was estimated that the annual vapour flow had decreased by 10% in Australia during the last 200 years. This is due to a decrease in woody vegetation for agricultural production. The reduction in vapour flows has caused severe problems with salinity of soils and rivers. The human-induced alteration of vapour flows was estimated at more than 15 times the volume of human-induced change in liquid water (Paper II). </p>
9

Modelling of wave impact on offshore structures

Abdolmaleki, Kourosh January 2007 (has links)
[Truncated abstract] The hydrodynamics of wave impact on offshore structures is not well understood. Wave impacts often involve large deformations of water free-surface. Therefore, a wave impact problem is usually combined with a free-surface problem. The complexity is expanded when the body exposed to a wave impact is allowed to move. The nonlinear interactions between a moving body and fluid is a complicated process that has been a dilemma in the engineering design of offshore and coastal structures for a long time. This thesis used experimental and numerical means to develop further understanding of the wave impact problems as well as to create a numerical tool suitable for simulation of such problems. The study included the consideration of moving boundaries in order to include the coupled interactions of the body and fluid. The thesis is organized into two experimental and numerical parts. There is a lack of benchmarking experimental data for studying fluid-structure interactions with moving boundaries. In the experimental part of this research, novel experiments were, therefore, designed and performed that were useful for validation of the numerical developments. By considering a dynamical system with only one degree of freedom, the complexity of the experiments performed was minimal. The setup included a plate that was attached to the bottom of a flume via a hinge and tethered by two springs from the top one at each side. The experiments modelled fluid-structure interactions in three subsets. The first subset studied a highly nonlinear decay test, which resembled a harsh wave impact (or slam) incident. The second subset included waves overtopping on the vertically restrained plate. In the third subset, the plate was free to oscillate and was excited by the same waves. The wave overtopping the plate resembled the physics of the green water on fixed and moving structures. An analytical solution based on linear potential theory was provided for comparison with experimental results. ... In simulation of the nonlinear decay test, the SPH results captured the frequency variation in plate oscillations, which indicated that the radiation forces (added mass and damping forces) were calculated satisfactorily. In simulation of the nonlinear waves, the waves progressed in the flume similar to the physical experiments and the total energy of the system was conserved with an error of 0.025% of the total initial energy. The wave-plate interactions were successfully modelled by SPH. The simulations included wave run-up and shipping of water for fixed and oscillating plate cases. The effects of the plate oscillations on the flow regime are also discussed in detail. The combination of experimental and numerical investigation provided further understanding of wave impact problems. The novel design of the experiments extended the study to moving boundaries in small scale. The use of SPH eliminated the difficulties of dealing with free-surface problems so that the focus of study could be placed on the impact forces on fixed and moving bodies.
10

Land Use, Freshwater Flows and Ecosystem Services in an Era of Global Change

Gordon, Line January 2003 (has links)
The purpose of this thesis is to analyse interactions between freshwater flows, terrestrial ecosystems and human well-being. Freshwater management and policy has mainly focused on the liquid water part (surface and ground water run off) of the hydrological cycle including aquatic ecosystems. Although of great significance, this thesis shows that such a focus will not be sufficient for coping with freshwater related social-ecological vulnerability. The thesis illustrates that the terrestrial component of the hydrological cycle, reflected in vapour flows (or evapotranspiration), serves multiple functions in the human life-support system. A broader understanding of the interactions between terrestrial systems and freshwater flows is particularly important in light of present widespread land cover change in terrestrial ecosystems. The water vapour flows from continental ecosystems were quantified at a global scale in Paper I of the thesis. It was estimated that in order to sustain the majority of global terrestrial ecosystem services on which humanity depends, an annual water vapour flow of 63 000 km3/yr is needed, including 6800 km3/yr for crop production. In comparison, the annual human withdrawal of liquid water amounts to roughly 4000 km3/yr. A potential conflict between freshwater for future food production and for terrestrial ecosystem services was identified. Human redistribution of water vapour flows as a consequence of long-term land cover change was addressed at both continental (Australia) (Paper II) and global scales (Paper III). It was estimated that the annual vapour flow had decreased by 10% in Australia during the last 200 years. This is due to a decrease in woody vegetation for agricultural production. The reduction in vapour flows has caused severe problems with salinity of soils and rivers. The human-induced alteration of vapour flows was estimated at more than 15 times the volume of human-induced change in liquid water (Paper II).

Page generated in 0.0757 seconds