Spelling suggestions: "subject:"gripper"" "subject:"ripper""
41 |
Haptics with Applications to Cranio-Maxillofacial Surgery PlanningOlsson, Pontus January 2015 (has links)
Virtual surgery planning systems have demonstrated great potential to help surgeons achieve a better functional and aesthetic outcome for the patient, and at the same time reduce time in the operating room resulting in considerable cost savings. However, the two-dimensional tools employed in these systems today, such as a mouse and a conventional graphical display, are difficult to use for interaction with three-dimensional anatomical images. Therefore surgeons often outsource virtual planning which increases cost and lead time to surgery. Haptics relates to the sense of touch and haptic technology encompasses algorithms, software, and hardware designed to engage the sense of touch. To demonstrate how haptic technology in combination with stereo visualization can make cranio-maxillofacial surgery planning more efficient and easier to use, we describe our haptics-assisted surgery planning (HASP) system. HASP supports in-house virtual planning of reconstructions in complex trauma cases, and reconstructions with a fibula osteocutaneous free flap including bone, vessels, and soft-tissue in oncology cases. An integrated stable six degrees-of-freedom haptic attraction force model, snap-to-fit, supports semi-automatic alignment of virtual bone fragments in trauma cases. HASP has potential beyond this thesis as a teaching tool and also as a development platform for future research. In addition to HASP, we describe a surgical bone saw simulator with a novel hybrid haptic interface that combines kinesthetic and vibrotactile feedback to display both low frequency contact forces and realistic high frequency vibrations when a virtual saw blade comes in contact with a virtual bone model. We also show that visuo-haptic co-location shortens the completion time, but does not improve the accuracy, in interaction tasks performed on two different visuo-haptic displays: one based on a holographic optical element and one based on a half-transparent mirror. Finally, we describe two prototype hand-worn haptic interfaces that potentially may expand the interaction capabilities of the HASP system. In particular we evaluate two different types of piezo-electric motors, one walking quasi-static motor and one traveling-wave ultrasonic motor for actuating the interfaces.
|
42 |
Analysis of handling stresses and breakage of thin crystalline silicon wafersBrun, Xavier F. 08 September 2008 (has links)
Photovoltaic manufacturing is material intensive with the cost of crystalline silicon wafer, used as the substrate, representing 40% to 60% of the solar cell cost. Consequently, there is a growing trend to reduce the silicon wafer thickness leading to new technical challenges related to manufacturing. Specifically, wafer breakage during handling and/or transfer is a significant issue.
Therefore improved methods for breakage-free handling are needed to address this problem.
An important pre-requisite for realizing such methods is the need for fundamental understanding of the effect of handling device variables on the deformation, stresses, and fracture of crystalline silicon wafers. This knowledge is lacking for wafer handling devices including the Bernoulli gripper, which is an air flow nozzle based device.
A computational fluid dynamics model of the air flow generated by a Bernoulli gripper has been developed. This model predicts the air flow, pressure distribution and lifting force generated by the gripper. For thin silicon wafers, the fluid model is combined with a finite element model to analyze the effects of wafer flexibility on the equilibrium pressure distribution, lifting force and handling stresses. The effect of wafer flexibility on the air pressure distribution is found to be increasingly significant at higher air flow rates. The model yields considerable insight into the relative effects of air flow induced vacuum and the direct impingement of air on the wafer on the air pressure distribution, lifting force, and handling stress. The latter effect is found to be especially significant when the wafer deformation is large. In addition to silicon wafers, the model can also be used to determine the lifting force and handling stress produced in other flexible materials.
Finally, a systematic approach for the analysis of the total stress state (handling plus residual stresses) produced in crystalline silicon wafers and its impact on wafer breakage during handling is presented. Results confirm the capability of the approach to predict wafer breakage during handling given the crack size, location and fracture toughness. This methodology is general and can be applied to other thin wafer handling devices besides the Bernoulli gripper.
|
43 |
Návrh robotického pracoviště pro automatickou montáž extruderů pro 3D tiskárny / Design of robotic workstation for automatic assembly of extruders for 3D printersPulicar, Roman January 2019 (has links)
Thesis is dealing with the creation of robotic worplace and its periphery. The paper is discrabing the robotic function and kinematics. The practical part of the paper shows several types of suggested robotic workplaces followed by solution processing of one selected type, where technical documentation and the calculation of production is made. The end of the paper shows economical and technological evaluation of the selected type of workplace including the price returns.
|
44 |
Gripper integrated vision system for on-the-fly position measurement of individual components in fuel cell stackingSchäfer, Jens, Fleischer, Jürgen 27 May 2022 (has links)
The stacking of membrane electrode assemblies (MEA) and bipolar plates is a key process in fuel cell stack production, in which requirements for high accuracy and shortest possible process time must be taken into account. In this paper technical systems for fuel cell stack assembly are analysed regarding means for handling, gripping and alignment of the components. The different methods are compared and evaluated, followed by a novel system allowing for an on-the-fly measurement of the position / Das Stapeln von Membran-Elektroden-Einheiten (MEA) und Bipolarplatten ist ein Schlüsselprozess in der Brennstoffzellen-Stack-Produktion, bei dem die Anforderungen an eine hohe Genauigkeit und eine möglichst kurze Prozesszeit berücksichtigt werden müssen. In diesem Beitrag werden technische Systeme für die Montage von Brennstoffzellenstapeln hinsichtlich der Handhabung, des Greifens und der Ausrichtung der Komponenten analysiert. Die verschiedenen Methoden werden verglichen und bewertet, gefolgt von einem neuartigen System, das eine on-the-fly Messung der Position ermöglicht.
|
45 |
New object grasp synthesis with gripper selection: process developmentLegrand, Tanguy January 2022 (has links)
A fundamental aspect to consider in factories is the transportation of the items at differentsteps in the production process. Conveyor belts do a great to bring items from point A topoint B but to load the item onto a working station it can demands a more precise and,in some cases, delicate approach. Nowadays this part is mostly handled by robotic arms.The issue encountered is that a robot arm extremity, its gripper, cannot directly instinctivelyknow how to grip an object. It is usually up to a technician to configure how andwhere the gripper goes to grip an item.The goal of this thesis is to analyse a problem given by a company which is to find a wayto automate the grasp pose synthesis of a new object with the adapted gripper.This automatized process can be separated into two sub-problems.First, how to choose the adapted gripper for a new object.Second, how to find a grasp pose on the object, with the previously chosen gripper.In the problem given by the company, the computer-aided design (CAD) 3D model of theconcerned object is given. Also, the grasp shall always be done vertically, i.e., the grippercomes vertically to the object and the gripper does not rotate on the x and y axis. Thegripper for a new object is selected between two kinds of grippers: two-finger paralleljawgripper and three-finger parallel-jaw gripper. No dataset of objects is provided.Object grasping is a well researched subject, especially for 2 finger grippers. However,few research is done for the 3 finger grippers grasp pose synthesis, or for gripper comparison,which are key part of the studied problem.To answer the sub-problems mentioned above, machine learning will be used for the gripperselection and a grasp synthesis method will be used for the grasp pose finding. However,due to the lack of gripper comparison in the related work, a new approach needsto be created, which will be inspired by the findings in the literature about grasp posesynthesis in general.This approach will consist of two parts.First, for each gripper and each object combination are generated some grasp poses, eachassociated with a corresponding score. The scores are used to have an idea of the bestgripper for an object, the best score for each gripper indicating how good a grasp couldbe on the object with said gripper.Secondly, the objects with their associated best score for each gripper will be used astraining data for a machine learning algorithm that will assist in the choice of the gripper.This approach leads to two research questions:“How to generate grasps of satisfying quality for an object with a certain gripper?”“Is it possible to determine the best gripper for a new object via machine learning ?”The first question is answered by using mathematical operations on the point cloud representationof the objects, and a cost function (that will be used to attribute a score), whileithe second question is answered using machine learning classification and regression togain insight on how machine learning can learn to associate object proprieties to gripperefficiency.The found results show that the grasp generation with the chosen cost function givesgrasp poses that are similar to the grasp poses a human operator would choose, but themachine learning models seem unable to assess grasp quality, either with regression orclassification.
|
46 |
Development of an insert for a gripper and a fastening system : Exemplified for a human robot collaborative assembly processDimuro Duckwitz, Gonzalo January 2022 (has links)
Nowadays, the use of robots in industrial tasks is growing constantly. However, manual assembly is one area that is hard to make fully automated since manual assembly operations work with different shapes and products that require human finesse to do some operations. Humans, on the other hand, have a lot of limitations since this kind of task can be unergonomic and repetitive for operators, which can cause them stress, fatigue, repetitive stress injuries(RSI), and repetitive motion injuries. This project involved designing an insert for the gripper 2F-85 (version 3) that would allow the collaborative robot (UR5) to carry out more assembly tasks in order to relieve human workers of repetitive tasks. The insert has to handle cylindrical shapes in addition to bigger parts that the actual insert cannot handle due to its parallel stroke. For that, a detailed market analysis and insert research were conducted in the initial study. The new insert was then developed using a double-diamond design process. The needs were ranked using the Moscow prioritization method, and ideas were then generated using the brainstorming technique. The final concept was chosen using the weighted decision matrix method. After the final concept selection, computer-aided design (CAD) technology was employed to create the new insert's 3D model and its technical specifications. The mechanical behaviour of the new insert was analysed to reflect its range of workability, expressing the maximum force that it can withstand on each of its grip work surfaces without presenting plastic deformation. For this study, finite element analyses were conducted following the general method for linear structural analysis using Abaqus. Achieving an insert that can reach, transport, and assemble different shapes will help integrate collaborative robots into manual assembly processes, avoiding the cost of a new gripper.
|
47 |
<b>Design and Modeling of Variable Stiffness Mechanisms </b><b>for</b><b> </b><b>Collaborative</b><b> </b><b>Robots</b><b> </b><b>and</b><b> </b><b>Flexible</b><b> </b><b>Grasping</b>Jiaming Fu (18437502) 27 April 2024 (has links)
<p dir="ltr">To ensure safety, traditional industrial robots must operate within cages to separate them from human workers. This requirement has led to the rapid development of collaborative robots (cobots) designed to work closely to humans. However, existing cobots often prioritize <a href="" target="_blank">performance </a>aspects, such as precision, speed, and payload capacity, or prioritize safety, leading to a challenging balance between them. To address this issue, this dissertation introduces innovative concepts and methodologies for variable stiffness mechanisms. These mechanisms are applied to create easily fabricated cobot components to allow for controllable trade-offs between safety and performance in human-robot collaboration intrinsically. Additionally, the end-effectors developed based on these mechanisms enable the flexible and adaptive gripping of objects, enhancing the utility and efficiency of cobots in various applications.</p><p dir="ltr">This article-based dissertation comprises five peer-reviewed articles. The first essay introduces a reconfigurable variable stiffness parallel-guided beam (VSPB), whose stiffness can be adjusted discretely. An accurate stiffness model is also established, capable of leveraging a simple and reliable mechanical structure to achieve broad stiffness variation. The second essay discusses several discrete variable stiffness actuators (DVSAs) suitable for robotic joints. These DVSAs offer high stiffness ratios, rapid shifting speeds, low energy consumption, and compact structures compared to most existing variable stiffness actuators. The third essay introduces a discrete variable stiffness link (DVSL), applied to the robotic arm of a collaborative robot. Comprising three serially connected VSPBs, it offers eight different stiffness modes to accommodate diverse application scenarios, representing the first DVSL in the world. The fourth essay presents a variable stiffness gripper (VSG) with two fingers, each capable of continuous stiffness adjustment. The VSG is a low-cost, customizable universal robotic hand capable of successfully grasping objects of different types, shapes, weights, fragility, and hardness. The fifth essay introduces another robotic hand, the world's first discrete variable stiffness gripper (DVSG). It features four different stiffness modes for discrete stiffness adjustment in various gripper positions by on or off the ribs. Therefore, unlike the VSG, the DVSG focuses more on adaptability to object shapes during grasping.</p><p dir="ltr">These research achievements have the potential to facilitate the construction and popularize of next-generation collaborative robots, thereby enhancing productivity in industry and possibly leading to the integration of personal robotic assistants into countless households.</p>
|
48 |
Development and analysis of a mechanical gripper in a GoFa ABB robotEscobar Hidalgo, Cristina January 2024 (has links)
This study focuses on the design and analysis of a specialised mechanical gripper for an assembly process of batteries, with particular emphasis on the study of the associated forces and deformations. The project commences with comprehensive market research to identify existing solutions. This is followed by the definition of requirements and an iterative design process utilising computer-aided design (CAD). Subsequently, a comprehensive force and deformation analysis is conducted using the finite element method (FEM) in Abaqus CAE. The results demonstrate that the designed gripper can withstand the applied loads with minimal deformation, indicating that it possesses adequate structural stiffness. The utility of finite element method (FEM) analysis in evaluating the viability of the proposed design is demonstrated. According to the design and analysis in this study, it manages to propose and developed a new kind of gripper with a higher grip range than those available on the market. These findings contribute to a deeper understanding of the suitability of the gripper design in relation to the expected loads and highlight the importance of the design methodology employed.
|
49 |
Garras con sensores táctiles intrínsecos para manipular alimentos con robotsBlanes Campos, Carlos 01 September 2016 (has links)
[EN] The primary handling of food with robots calls for the development of new manipulation devices, especially when products are easily damaged and have a wide range of shapes and textures. These difficulties are even greater in the agricultural industry because the quality of the products is also checked during the manual handling process. This PhD dissertation provides solutions to these issues and helps to further introduce robotics into the handling of food.
Several methods for handling food are included and analyzed, and specific solutions are proposed and then validated with prototypes. The research focuses on devices capable of adapting themselves to the shapes of the products without increasing the complexity of the mechanism. After analyzing several different solutions, the method chosen involves the use of under-actuated mechanisms, compliant mechanisms and fingers with pads filled with granular fluids. These fluids can behave as quasi-liquids or quasi-solids due to the jamming transition, which provides a soft initial grasp and can support high stresses during fast movements performed by the robot.
The additive manufacturing process provides an opportunity to develop robot grippers that are lighter, simpler, more flexible and cheaper. By using this process elastic mechanisms are manufactured in a single part, which are equivalent to mechanisms with several rigid parts connected by joints. Laser sintering is employed to produce pneumatic actuators, with different types of motions, based on the elastic properties of the materials used in this manufacturing process. As a result, the systems can be simplified to achieve grippers, with several fingers, that are produced as a single part.
In order to estimate the freshness and quality of agricultural products while they are being grasped, accelerometers are added to the fingers of several grippers. Accelerometers are economical and act as intrinsic tactile sensors. They can be easily embedded, thereby reducing the risk of getting damaged due to contact with the product, and allow each of the grasping phases to be identified. To achieve good performance of the accelerometers, a specific process is defined for the robot gripper, which touches the products a few times. In addition, several gripper prototypes are manufactured with diverse under-actuated mechanisms, jamming systems, and a new program that processes the signals from the accelerometers using different procedures in order to obtain parameters that can be used to estimate the quality of products. These parameters are correlated with data from destructive tests that are commonly used as a reference. The best performance of the accelerometers is achieved when the finger employs a granular fluid, a correlation coefficient of 0.937 being accomplished for the ripeness of mangoes and 0.872 for the firmness of eggplants. / [ES] La manipulación primaria de alimentos con robots precisa del desarrollo de nuevos sistemas de manipulación especialmente cuando los productos son sensibles al daño y presentan una amplia variabilidad de formas y texturas. En el sector agroalimentario las dificultades son aún mayores ya que la manipulación manual sirve además para inspeccionar los productos durante el proceso. Está tesis aporta soluciones a estos problemas facilitando la incorporación de la robótica.
En la tesis se recopilan y analizan diversas soluciones para poder manipular alimentos proponiendo soluciones concretas que luego son validadas con prototipos. La investigación se centra en aquellos sistemas que son capaces de auto adaptarse a las formas de los productos sin incrementar la complejidad del mecanismo. Tras analizar diversas técnicas se propone el uso de mecanismos infra-actuados, mecanismos flexibles y dedos con fluidos granulares que, al estar encerrados dentro de una membrana, se comportan como cuasi-líquidos o cuasi-sólidos gracias a la transición jamming, permitiendo un agarre inicial suave y la posibilidad de transmitir esfuerzos elevados durante los movimientos del robot.
En la búsqueda de garras más ligeras, sencillas, flexibles y económicas se aprovecha la oportunidad que brinda la tecnología de fabricación aditiva de material. Gracias a este proceso se fabrican mecanismos flexibles realizados en una única pieza y que equivalen a mecanismos de garras realizados con varias piezas rígidas unidos por articulaciones. Mediante el sinterizado por láser, se fabrican actuadores neumáticos, con diversos tipos de movimiento, basados en la flexibilidad del material empleado en su fabricación. En conjunto se simplifican los sistemas llegando a realizar garras flexibles de varios dedos fabricadas en una única pieza.
Para evaluar la calidad y frescura de los productos agroalimentarios durante el agarre se emplean acelerómetros localizados en los dedos de varias garras. Los acelerómetros son económicos y se comportan como sensores táctiles intrínsecos, están fuera del contacto directo con el producto evitando desgastes por contacto y permiten identificar las distintas fases de agarre. Para lograr esto se desarrolla un proceso específico del robot con la garra, que palpa varias veces el producto. Se fabrican diversos tipos de garra con distintas tecnologías de mecanismos infra-actuados y sistemas jamming y se programa un algoritmo original de procesado de señal que con diversas técnicas es capaz de extraer parámetros de los acelerómetros que sirven para evaluar la calidad de los productos. Estos parámetros son correlacionados con los datos de ensayos destructivos que son habitualmente empleados como referencia. Las mejores capacidades se consiguen empleando garras con jamming lográndose coeficientes de correlación de 0.937 en índices de madurez con mangos y 0.872 en firmeza de berenjenas. / [CA] La manipulació primària d'aliments amb robots precisa del desenvolupament de nous sistemes de manipulació especialment quan els productes són sensibles al dany i presenten una àmplia variabilitat de formes i textures. En el sector agroalimentari les dificultats són encara més grans ja que la manipulació manual serveix a més per a inspeccionar els productes durant el procés. Aquesta tesi aporta solucions a aquests problemes facilitant la incorporació de la robòtica.
En la tesi es recopilen i analitzen diverses solucions per a poder manipular aliments proposant solucions concretes que després són validades amb prototips. La investigació es centra en aquells sistemes que són capaços d'auto adaptar-se a la forma dels productes sense incrementar la complexitat del mecanisme. Després d'analitzar diverses tècniques es proposa l'ús de mecanismes infra-actuats, mecanismes flexibles i dits amb fluids granulars que, tancats dins d'una membrana, es comporten com quasi-líquids o quasi-sòlids gràcies a la transició jamming, permetent una prensió inicial suau i la possibilitat de transmetre esforços elevats durant els moviments del robot.
En la recerca d'urpes més lleugeres, senzilles, flexibles i econòmiques s'aprofita l'oportunitat que brinda la tecnologia de fabricació additiva de material. Gràcies a aquest procés es fabriquen mecanismes flexibles realitzats en una única peça i que equivalen a mecanismes d'urpes realitzats amb diverses peces rígides unides per articulacions. Mitjançant el sinteritzat per làser, es fabriquen actuadors pneumàtics, amb diversos tipus de moviment, basats en la flexibilitat del material emprat en la seva fabricació. En conjunt es simplifiquen els sistemes arribant a realitzar urpes flexibles de diversos dits fabricades en una única peça.
Per a avaluar la qualitat i frescor dels productes agroalimentaris durant la manipulació s'empren acceleròmetres localitzats en els dits de diverses urpes. Els acceleròmetres són econòmics i es comporten com a sensors tàctils intrínsecs, sense estar en contacte directe amb el producte evitant desgastos per aquest motiu, i permeten identificar les diferents fases d'prensió. Per aconseguir això es desenvolupa un procés específic del robot amb l'urpa, que palpa diverses vegades el producte. Es fabriquen diversos tipus d'urpa amb diferents tecnologies de mecanismes infra-actuats i sistemes jamming i es programa un algoritme original de processat de senyal que, amb diverses tècniques, és capaç d'extreure paràmetres dels acceleròmetres que serveixen per a avaluar la qualitat dels productes. Aquests paràmetres són correlacionats amb les dades d'assajos destructius que són habitualment emprats com a referència. Les millors capacitats s'aconsegueixen emprant urpes amb jamming assolint-se coeficients de correlació de 0,937 en índexs de maduresa amb mangos i 0,872 en fermesa d'albergínies. / Blanes Campos, C. (2016). Garras con sensores táctiles intrínsecos para manipular alimentos con robots [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68481
|
50 |
Gripper Tool Designed for a Surgical Collaborative Robot / Gripdon designad för en kirurgisk kollaborativ robotAndersson, Emma January 2019 (has links)
In surgery, suturing is the use of needle and thread to join cut and/or damaged anatomical structures together. This repair strategy is highly versatile and is universal for all types of surgery as the goal is to restore, repair or improve function and/or appearance. The needles are almost always curved in shape, and it is handled and maneuvered by surgeons with a special tool called: needle driver. The versatility of this setup has proven its worth over time as needle drivers are one of the indispensable instruments in all types of surgery. We are entering a future where robots can be programmed to execute tasks with much higher level of precision and speed compared to humans. Medical robotics in surgery has gained ground over the past decades due to promising clinical results. A straightforward step in this direction would be to create a solution that enables the robot to grip needle driver. The purpose of this study was to develop a gripper tool that enables a collaborative robot to perform suturing with one of the most common types of needle drivers used in surgery. The Double Diamond design framework was employed. The selected content in the predefined four phases were: 1) Discover: Observation, MoSCoW Prioritization, Brainstorming, Choosing a Sample, Fast Visualisation, 2) Define: Assessment criteria, 3) Develop: Physical prototyping 4) Deliver: Final testing and Evaluation. In the first phase, Discover, clinical and technical demands were formulated. In the second phase, Define, numerous design ideas were generated and drafted on paper whereof the one with highest assessment score was chosen for physical prototyping. In phase three, Develop, the selected design idea was modelled in cardboard, clay and silicon, and 3D printed. Multiple design iterations were guided by feedback from clinical and technical experts and resulted in a final prototype design that was accepted by the experts. In phase four, Deliver, the final prototype was subjected to final testing and evaluation. Observation of five live and one video recording of surgical procedures on real patients were made. The insights gained were confirmed with the lead and co-surgeons of each procedure and were summarized in 24 clinically important observations relevant for the gripper tool design. Careful analysis of the previously designed gripper tool, live observation of the robot’s motion pattern and range, and interview with robotic engineer were summarized in ten technically important observations. The observations were then used to formulate the clinical and technical demands that the gripper tool design aims to fulfill, followed by prioritizing the demands and design features according by MoSCoW method and brainstorming on how to improve previous gripper tool design. To limit the scope of the design challenge, one of the five types of needle drivers used in pediatric heart surgery in Lund was selected in the method Choosing a Sample. To further characterize the clinical and technical demands, a test bench was set up to Define and measure force vectors applied on the needle driver when held by a surgeon during suturing. The radial forces vectors in six directions perpendicular to the tip of the needle driver ranged from 1.6 N to 3.8 N. The axial force along the length of the needle driver was 7.6 N towards the tip and 8.4 N towards the back end. The clockwise and counterclockwise torque along the length axis of the needle driver was 0.2 Nm and 0.18 Nm, respectively. The set of defined demands were sufficient to sketch numerous ideas of gripper tool designs according to the Fast Visualization method. These designs were then used in the Define phase to communicate the design ideas with surgeons, robotic and product development engineers. The most promising idea was advanced to the Develop phase where physical prototypes were produced in cardboard, clay and silicon and 3D printed. Inadequacies were found during design feedback with interviews and testing together with clinical and technical experts, and design actions were taken to arrive at the final prototype. The final prototype was brought into the Deliver phase for final testing and evaluation. The gripper tool could handle lager force loads than the human surgeon in all the stability tests. However, deflection of the needle driver occurred with the gripper tool unlike when the surgeon was subject to stability testing. One pediatric heart surgeon and one robotic engineer was asked to generate a composite score of fulfillment rate from 1–5, where 1 is bad, 3 satisfactory, and 5 excellent after final testing of the gripper tool was carried out. The final prototype of the gripper tool fulfills all clinical and technical demands at the level of 4, and 3–5, respectively. In conclusion, the design methodology used in this study was useful in the development of a gripper tool design that respects both clinical and technical demands. This suggest that the methodology may be used in similar setting of design challenges in the field between medical and technical innovation. The gripper tool fulfilled the demands, although further refinement in the choice of material, further testing and investigation of regulatory aspects are required before it can be implemented in the operating room. / Vid operation är suturering användningen av nål och tråd för att sammanfoga snittad och/eller skadade anatomiska strukturer. Denna reparationsstrategi är mycket mångsidig och universell för alla typer av kirurgi eftersom målet är att återställa reparera eller förbättra funktion och/eller anatomisk defekt. Nålarna är nästan alltid krökta i sin form och de hanteras och manövreras av kirurgerna med ett speciellt verktyg som kallas: nålförare. Mångsidigheten i denna uppställning har visat sig över tid eftersom nålförare är ett av de oumbärliga instrumenten vid alla typer av operationer. Vi går in i en framtid där robotar kan programmeras för att utföra uppgifter med mycket högre precision och hastighet jämfört med människor. Medicinska robotar inom kirurgi har varit på frammarsch senaste årtionden på grund av goda kliniska resultat. Ett steg i denna riktning skulle vara att skapa en lösning som gör det möjligt för en robot att greppa nålföraren. Syftet med denna studie var att utveckla ett gripdon som möjliggör för en kollaborativ robot att utföra suturering med hjälp av en av de vanligaste typerna av nålförare som används vid operation. Design metodiken Double Diamond användes för att beskriva design processensen. Det valda metoderna i de fyra för definierade faser var: 1) Discover: Observation, MoSCoW Prioritization, Brainstorming, Choosing a Sample, Fast Vissualization, 2) Define: Assessment criteria, 3) Develop: Physical Prototyping, 4) Deliver: Final testing and Evaluation. I första fasen, Discover, formulerades kliniska och tekniska krav. I den andra fasen, Define, definierades flera designidéer som skissades på papper, varav den med den högsta poängen valdes i Assessment criteria. I fas tre, Develop, modellerades den valda designidén i kartong, lera och silikon samt 3D-printades. Flera designiterationer gjordes baserat på feedback från kliniska och tekniska experter vilket resulterade i en slutlig prototypdesign som godkändes av experterna. I fas fyra, Deliver, testades och utvärderades den slutliga prototypen. Observation av fem realtids och en videoinspelning av kirurgiska ingrepp på riktiga patienter gjordes. Insikterna som gjordes bekräftades med kirurgerna som genomförde operationen och sammanfattades i 24 kliniskt viktiga observationer som var relevanta för gripdon designen. Noggrann realtids observation av robotens rörelsemönster samt analys av det tidigare utformade gripdonen och intervju med en robotingenjör sammanfattades i tio tekniskt viktiga observationer. Observationerna användes för att formulera kliniska och tekniska krav som gripdons designen strävar efter att uppfylla, följt av prioritering av kraven och designegenskaper enligt MoSCoW-metoden och brainstorming kring hur tidigare gripdons design kan förbättras. För att begränsa designutmaningens omfattning valdes en av de fem typer av nålförare som används vid barnhjärtkirurgi i Lund genom metoden Chossing a sample. För att ytterligare karakterisera de kliniska och tekniska kraven upprättades en testbänk för att definiera och mäta kraftvektorer som appliceras på nålföraren när den hålls av en kirurg under suturering. De radiella krafterna i sex riktningar vinkelrätt mot nålförarens spets varierade från 1,6 N till 3,8 N. Den axiella kraften längs nålförarens längd var 7,6 N mot spetsen och 8,4 N mot bakänden. Medurs och moturs vridmoment längs nålförarens längdaxel var 0,2 Nm respektive 0,18 Nm. Dom definierade kraven låg till grund för skisser av flertal gripdondesign idéer enligt Fast Visualization. Dessa skisser användes sedan i Define fasen för att kommunicera designidéer med kirurger samt robot- och produktutvecklingsingenjörer. Den mest lovande idén togs till Develop fasen där fysiska prototyper togs fram i kartong, lera och silikon samt genom 3D-printning. Förbättringspunkter hittades under testning och återkoppling med intervjuer tillsammans med kliniska och tekniska experter. Designåtgärder baserat på återkopplingen gjordes för att komma fram till den slutliga prototypen. Slutlig testning och utvärdering av den slutliga prototypen genomfördes i Deliver fasen. Gripdons designen kunde hantera större belastningar än den mänskliga kirurgen i alla stabilitetstester. Böjning av nålföraren uppstod dock i testerna med gripverktyget till skillnad från testerna med kirurgen var föremål för stabilitetsprovning. En barnhjärtkirurg och en robotingenjör poängsatte uppfyllnadsgrad av de kliniska respektive tekniska kraven efter att slutlig testning av gripdonet utförts. Uppfyllnadsgraden poängsattes från 1–5 där 1 var dålig, 3 tillfredsställande och 5 utmärkt. Gripdonets slutliga prototyp uppfyller alla kliniska och tekniska krav på nivå 4 respektive 3–5. Designmetodiken som användes i denna studie var användbar för utvecklingen av gripdon som uppfyller både de kliniska och tekniska kraven. Detta tyder på att denna metod kan användas i liknande designutmaningar inom området mellan medicinsk och teknisk innovation. Gripdonet uppfyllde kraven även om ytterligare förfining i materialvalet, ytterligare testning och undersökning av regulatoriska aspekter krävs innan den kan användas under riktiga operationer i operationssalen.
|
Page generated in 0.027 seconds