21 |
Peptide Antisera Generation against Three <em>Chlamydia trachomatis</em> Hsp60 Homologues to Examine Expression of each Hsp60 during Iron Restrictive Growth.LaRue, Richard Wayne 01 May 2004 (has links) (PDF)
A Chlamydia trachomatis heat shock protein 60kDa (chsp60) exhibits increased expression in response to iron limitation. Genome sequencing revealed three genes encoding chsp60s. The objective of this study was to generate peptide antisera that would selectively recognize each chsp60. The DNA sequence for each C. trachomatis serovar E chsp60 was determined and compared with existing genome sequences. Predictive amino acid sequences were evaluated for peptides unique to each chsp60. Synthetic peptides were used to generate antisera; the resultant sera were purified by affinity chromatography and adsorbed to reduce cross-reactivity and increase monospecificity. Antisera were evaluated against each recombinant chsp60 protein by Western blotting. Reactivity against native chsp60s was visualized by transmission electron microscopy. Initial experiments indicate that expression of the second chsp60 (encoded by groEL_2) is increased during iron limitation. The production of chsp60 antibodies in human patients is associated with damaging sequelae in chlamydial genital and ocular infections.
|
22 |
Understanding Ultrafast Hydration Dynamics under Crowding Condition and Tryptophan Fluorescence Quenching Mechanism in Gamma-M7 CrystallinYang, Yushan January 2021 (has links)
No description available.
|
23 |
Computational Studies of Protein Folding Assistance and Conformational Pathways of Biological NanomachinesSmith, Nathan B. January 2015 (has links)
No description available.
|
24 |
Characteristics of <i>Listeria monocytogenes</i> Important for Pulsed Electric Field Process OptimizationLado, Beatrice H. January 2003 (has links)
No description available.
|
25 |
Characterization of the Structure, Function and Assembly of the DrrAB Antibiotic Efflux Pump in Streptomyces PeucetiusRao, Divya Kishore 30 November 2008 (has links)
ATP binding cassette (ABC) transporters constitute one of the largest families of transport proteins. The occurrence of multidrug resistance (MDR) in human cancer cells has been correlated with the over expression of human ABC, P-glycoprotein (Pgp). Streptomyces peucetius produces two anticancer agents, doxorubicin and daunorubicin, that belong to the anthracycline family of antibiotics. The organism is self-resistant to the potent effects of the antibiotics it produces due to the action of an efflux pump, DrrAB. Both Pgp and DrrAB carry out similar functions, but in two different cell types. An understanding of the bacterial drug transporter DrrAB is thus expected to help in obtaining a better understanding of the function and evolution of the multidrug transporter P-glycoprotein. In DrrAB, the catalytic and membrane domains are present on separate subunits, DrrA and DrrB respectively. How the catalytic ATP-binding domains and the membrane domains in transporters interact with each other, or how energy is transduced between them, is not well understood. We introduced several single cysteine substitutions in DrrB and then by using a cysteine to amine hetero-bifunctional cross-linker showed that DrrA interacts predominantly with the N-terminal cytoplasmic tail of DrrB. Within this region of DrrB, we also identified a sequence with similarities to the EAA motif found in importers of the ABC family of proteins, thus leading to the proposal that the EAA or the EAA-like motif may be involved in forming a generalized interface between the ABC and the TMD of both uptake and export systems. By using a combination of approaches, including point mutations and disulfide cross-linking analysis, we show here that the Q-loop region of DrrA plays an important role in dimerization of DrrA as well as in interactions with DrrB. Furthermore, we also show that the interaction of the Q-loop with the N-terminus of DrrB is involved in transmitting conformational changes between DrrA and DrrB. The scope of the present study further extends into identifying the factors involved in the biogenesis of the DrrAB pump. We have identified two accessory proteins namely, FtsH and GroEL that may be involved in proper folding and assembly of the transporter.
|
26 |
Elucidating the Role of Toxin-Induced Microbial Stress Responses in Biological Wastewater Treatment Process UpsetBott, Charles Briddell 16 April 2001 (has links)
The overall hypothesis of this work is that the physiological microbial stress response could serve as a rapid, sensitive, and mechanistically-based indicator of process upset in biological wastewater treatment systems that receive sporadic shock loads of toxic chemicals. The microbial stress response is a set of conserved and unique biochemical mechanisms that an organism activates or induces under adverse conditions, specifically for the protection of cellular components or the repair of damaged macromolecules. Using traditional immunochemical analysis techniques, the heat shock protein, GroEL, was found to be induced in activated sludge cultures exposed to perturbations of chemicals at all concentrations tested (cadmium, pentachlorophenol, and acetone) or heat stress. As total cadmium concentrations increased above 5 mg/L, there was a significant and consistent increase in effluent volatile suspended solids concentrations from activated sludge sequencing batch reactors relative to unstressed controls, but there was no additional increase in GroEL levels.
Stress proteins may serve as sensitive and rapid indicators of mixed liquor toxicity which can adversely impact treatment process performance, but GroEL may not be a good candidate protein for this purpose due to the lack of a dose/response relationship. Additionally, production of stress proteins did not explain the significant deflocculation upsets that were characteristic of many of the industrially-relevant chemicals tested, including pentachlorophenol and cadmium. Although the purpose of stress response mechanisms is protective at the cellular level, the effect may be disruptive at the macroscopic level in engineered bioreactor systems.
The goal of the second research phase was to determine whether the bacterial glutathione-gated, electrophile-induced potassium efflux system is responsible for deflocculation observed due to shock loads of toxic electrophilic (thiol reactive) chemicals. The results indicate significant K+ efflux from the activated sludge floc structure to the bulk liquid in response to shock loads of 1-chloro-2,4-dinitrobenzene (CDNB), N-ethylmaleimide (NEM), 2,4-dinitrotoluene (DNT), 1,4-benzoquinone (BQ), and Cd2+ to a bench-scale sequencing batch reactor (SBR) system. In most cases, the stressor chemicals caused significant deflocculation, as measured by an increase in effluent volatile suspended solids (VSS), at concentrations much less than that required to reduce the maximum specific oxygen uptake rate by 50% (IC50). This suggests that electrophile-induced activated sludge deflocculation is caused by a protective bacterial stress mechanism (as hypothesized) and that the upset event may not be detectable by aerobic respirometry. More importantly, the amount of K+ efflux appeared to correlate well with the degree of deflocculation.
The transport of other cations including sodium, calcium, magnesium, iron, and aluminum, either to or from the floc structure, was negligible as compared to K+ efflux. In bench-scale SBRs, it was also determined that the K+ efflux occurred immediately (within minutes) after toxin addition and then was followed by an increase in effluent turbidity. K+ efflux and deflocculation responses were similar for bench-scale SBRs and continuous-flow reactor systems, indicating that the periods of elevated exogenous substrate levels typical in SBR systems are not required to activate electrophile-induced K+ efflux or deflocculation. This also suggests that the initial and rapid efflux of K+ immediately following electrophile addition is the factor that leads to deflocculation, not the increase in bulk liquid K+. Sphingomonas capsulata, a bacterium consistent with that found in biological wastewater treatment systems, Escherichia coli K-12, and activated sludge cultures exhibited very similar dynamic efflux/uptake/efflux responses due to the electrophilic stressors, NEM and CDNB, and the thiol reducing agent, dithiothreitol (DTT).
The polyether ionophore antibiotic, nigericin, was used to artificially stimulate K+ efflux from S. capsulata and activated sludge cultures. Thus, glutathione-gated K+ efflux (GGKE) activity may cause K+ release from the cytoplasm of activated sludge bacteria into the floc structure and extracellular polymeric substances (EPS) and then diffusion-limited transport into the bulk liquid. It was not possible to resolve the effect of the GGKE system on changes in bulk liquid or floc-associated pH. However, calculations indicate that the localized K+ concentration within the floc structure immediately after chemical stress is consistent with that known to induce floc disruption as a result of KCl addition. Using alkaline phosphatase as a periplasmic marker as well as fluorescent membrane-permeable and impermeable nucleic acid stains, it was determined that a negligible amount of the K+ efflux response was due to lysis of activated sludge microorganisms. The current results are very promising and are the first to suggest that activated sludge upset (i.e. deflocculation) may be caused by a specific protective stress response in bacteria. / Ph. D.
|
27 |
Designing Cell-Free Protein Synthesis Systems for Improved Biocatalysis and On-Demand, Cost-Effective BiosensorsSoltani Najafabadi, Mehran 06 August 2021 (has links)
The open nature of Cell-Free Protein Synthesis (CFPS) systems has enabled flexible design, easy manipulation, and novel applications of protein engineering in therapeutic production, biocatalysis, and biosensors. This dissertation reports on three advances in the application of CFPS systems for 1) improving biocatalysis performance in industrial applications by site-specific covalent enzyme immobilization, 2) expressing and optimizing a difficult to express a mammalian protein in bacterial-based CFPS systems and its application for cost-effective, on-demand biosensors compatible with human body fluids, and 3) streamlining the procedure of an E. coli extract with built-in compatibility with human body fluid biosensors. Site-specific covalent immobilization stabilizes enzymes and facilitates recovery and reuse of enzymes which improves the net profit margin of industrial enzymes. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. This dissertation reports the reliability of several design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of a target enzyme, TEM-1 ?-lactamase. This work demonstrates that the design heuristics can successfully identify a subset of favorable locations for experimental validation. This approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to efficiently identify optimal enzyme immobilization sites. Additionally, this dissertation reports high-yield soluble expression of a difficult-to-express protein (murine RNase Inhibitor or m-RI) in E. coli-lysate-based CFPS. Several factors including reaction temperature, reaction time, redox potential, and presence of folding chaperones in CFPS reactions were altered to find suitable conditions for m-RI expression. m-RI with the highest activity and stability was used to develop a lyophilized CFPS biosensor in human body fluids which reduced the cost of biosensor test by ~90%. Moreover, an E. coli extract with RNase inhibition activity was developed and tested which further streamlines the production of CFPS biosensors compatible with human body fluids.
|
Page generated in 0.0253 seconds