• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FIP (FtsH5 Interacting Protein): uma proteína dedo-de-zinco envolvida no mecanismo de resposta a estresse abiótico em Arabidopsis thaliana / FIP (FtsH5 Interacting Protein): a zinc-finger protein involved in the abiotic stress response mechanism in Arabidopsis thaliana

Lopes, Karina Letícia 04 July 2019 (has links)
As reações luminosas da fotossíntese em plantas envolvem quatro complexos proteicos multi-unidades na membrana dos tilacóides incluindo o fotossistema II (PSII), o complexo citocromo b6f, o fotossistema I (PSI) e o complexo ATP sintase. Uma atividade apropriada desse processo exige um mecanismo de controle de qualidade mediado por chaperonas, DnaJs e proteases, como o complexo FtsH. Esse conjunto de proteínas garantem um dobramento correto de proteínas, as montagens devidas dos complexos e a degradação de algumas subunidades danificadas quando necessário. Neste trabalho nós mostramos o envolvimento de FIP, uma proteína com um domínio dedo-de-zinco localizada nos tilacóides de cloroplastos de A. thaliana, no mecanismo de resposta à estresses abióticos. Plantas mutantes fip foram, fenotipicamente, mais tolerantes à estresses abióticos de alta luminosidade, elevado potencial osmótico e excesso de sal. Também mostramos que a expressão de FIP é diminuída em resposta às diferentes condições de estresse, assim como o acúmulo de transcritos de genes relacionados à estresse foi menor nas plantas mutantes fip. Análises por immunoblot mostraram que os mutantes fip acumulam menos proteínas PsaA e PsaB do fotossistema I e plastocianina (PC) do que as plantas selvagens, no entanto não são afetados quanto ao acúmulo de proteínas do fotossistema II e do Complexo do Citocromo b6f sob condições controle. Esses mutantes também acumulam menos FtsH5 nos tilacóides, sem afetar a eficiência dos fotossistemas I e II. Foi testado também o potencial redutase do domínio dedo-de-zinco da proteína recombinante FIP (6xHis-FIP) em ensaios in vitro de redução de insulina. Vimos que FIP apresenta atividade redutase, significantemente, maior que o controle negativo nas condições testadas. Considerando todos os resultados obtidos até o momento, acreditamos que FIP possa estar agindo como uma redutase na membrana dos tilacóides, tendo como alvos não somente FtsH5, mas também outras proteínas com resíduos de cisteína nas suas estruturas, e que sua atividade tem influência no acúmulo de proteínas dependentes de redução para a maturação como PsaA, PsaB e PC. Uma investigação mais aprofundada da atividade de FIP nos cloroplastos ainda é necessária para o completo entendimento da sua função. / The light-driven photosynthetic reactions in plants take place within four multi- subunit protein complexes in the thylakoid membranes, including photosystem II (PSII), the cytochrome b6f complex, photosystem I (PSI) and the ATP synthase complex. Regulation of all these molecular machineries requires a fine-tuning control mechanism mediated by specific proteins, including chaperones, DnaJs, and proteases, such as the FtsH complex. These set of proteins guarantee the proper folding, assembly and degradation of the photosynthetic complexes\' subunits. In this work we showed the involvement of FIP, a zinc-finger protein localized in the thylakoid membranes in A. thaliana, in the abiotic stress response mechanism. Mutants fip knockdown plants were phenotypically more tolerant to abiotic stresses like high light, increased osmotic potential and salt excess. We also showed that FIP is down-regulated by different abiotic stresses, with lower levels of stress-related gene transcripts accumulation in mutant fip plants. Analysis of accumulation of photosynthetic proteins by immunoblot under control conditions showed that mutants fip displayed lower levels of PsaA, PsaB (PSI) and Plastocyanin (PC) proteins than wild-type plants, however are not affected for PSII and Cyt b6f proteins accumulation under the same growth conditions. In addition, the mutants accumulated slightly less FtsH5 proteins in thylakoid membranes, without affecting PSII and PSI efficiency. We tested the putative reductase activity probably mediated by FIP zinc-finger domain, using the recombinant form of the protein 6xHis-FIP in in vitro insulin reduction assays. FIP presented a reductase activity higher than the negative control under the same assay conditions. Taking all together, these results suggest that FIP may be acting as a reductase in the thylakoid membranes, having as targets not only FtsH5 but other targets with available cysteine residues, depending on the reduction step for proper accumulation such as PsaA, PsaB and PC. Further investigations regarding the role of FIP in chloroplasts are still necessary to completely understand its function.
2

Evolução convergente da protease FtsH5 de Arabidopsis thaliana e seu regulador negativo putativo FIP (FtsH5 interacting protein) / Convergent evolution of Arabidopsis thaliana FtsH5 protease and its putative negative regulator FIP (FtsH5 interacting protein)

Silva, Marcos Araújo Castro e 02 March 2015 (has links)
As metaloproteases AAA/FtsH são componentes chave do controle da qualidade das proteínas inseridas nas membranas de mitocôndrias e cloroplastos. Em Arabidopsis thaliana, as proteases FtsH presentes nas membranas dos tilacóides formam um complexo heterohexamérico composto pelas subunidades FtsH1/FtsH5 (tipo A) e FtsH2/FtsH8 (tipo B). Este complexo está envolvido na reciclagem de proteínas foto-danificadas, especialmente da proteína D1, centro de reação do PSII. Algumas linhas de evidências indicam ainda que existe um limiar de concentração das proteases FtsH, necessário para a correta formação e desenvolvimento dos cloroplastos. Apesar da extensiva caracterização genética e molecular das proteases FtsH, o mecanismo regulatório do complexo FtsH dos cloroplastos não foi totalmente elucidado até o momento, contudo existem evidências de que a sua ativação pode estar relacionada a alta incidência luminosa e a outras condições de estresse. A presença de fatores proteicos auxiliares, foi testada como hipótese alternativa por nosso grupo, através do uso da protease FtsH5 como isca em um ensaio de duplo híbrido de leveduras. Este ensaio identificou uma proteína interagente putativa, nomeada FIP (FtsH5 Interacting Protein), a qual comprovadamente interage com FtsH5 e está localizada nas membranas dos tilacóides. De modo a investigar o papel regulatório putativo de FIP sobre a atividade do complexo FtsH, nós analisamos os padrões de expressão em uma ampla gama de condições de estresse a partir de dados públicos de microarranjos de DNA. Os perfis de expressão indicam que FIP pode ser um regulador negativo da atividade do complexo. Os resultados também sugerem que o complexo pode estar envolvido na resposta do cloroplasto a diferentes tipos de condições de estresse. O estudo da história evolutiva das proteínas interagentes FtsH5 e FIP evidenciou que as sequências homólogas a FIP são encontradas exclusivamente em musgos e plantas superiores, sugerindo assim que a origem de FIP pode estar relacionada a colonização terrestre. Todos os genes codificantes das proteases FtsH do complexo foram usados como \"query\" na busca por sequências homólogas, permitindo a classificação das proteases FtsH nos tipos A e B por inferência filogenética Bayesiana. Análises filogenéticas Bayesianas também foram feitas para FIP e as proteases FtsH tipos A e B, independentemente. A análise Mirrortree suportou a existência de coevolução entre FIP e as proteases FtsH tipo A. Por outro lado, nenhuma correlação foi encontrada entre FIP e as proteases FtsH tipo B, o que corrobora nossas observações experimentais anteriores. Além disso, o agrupamento portador de homólogos FIP pôde ser recuperado em uma filogenia mais completa das proteases FtsH do tipo A. Análises subsequentes mostraram que ambas as proteínas interagentes estão extensivamente sobre seleção negativa e que proteases FtsH tipo A são bastante conservadas, principalmente nos seus domínios internos. / Eukaryotic AAA/FtsH metalloproteases display a key role in the protein quality control of membrane-inserted proteins in mitochondria and chloroplasts. In Arabidopsis thaliana, chloroplast thylakoidal membranes FtsH proteases form a heterohexameric complex made by FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. This complex is involved in protein turnover of photo-damaged proteins, in particular the D1 protein at the PSII reaction center. Several lines of evidence also indicate that a FtsH threshold level is necessary for the proper formation and development of chloroplasts. Despite extensive genetic and molecular characterization of the FtsH proteases, the regulatory mechanism of the FtsH complex in chloroplasts has not yet been fully elucidated, however, there are evidences that its activation might be related to high light incidence and other stress conditions. The presence of auxiliary protein factors, as an alternative hypothesis, was tested by our group, through the use of the protease FtsH5 as bait in a yeast two-hybrid assay. This essay identified a putative interacting protein named FIP (FtsH5 Interacting Protein), which has been proved to interact with FtsH5 and be located at the thylakoid membranes. In order to investigate a putative regulatory role of FIP on FtsH complex activity, we analyzed gene expression patterns in a wide range of stress conditions from public DNA microarray data. The expression profiles indicate that FIP could be a negative regulator of the FtsH complex activity. The results also suggest that the complex may be involved in the chloroplast response to different types of stress conditions. In order to shed some light on the evolutionary history of FtsH5 and FIP interacting proteins, we have shown that FIP\'s homologous sequences were exclusively found in mosses and higher plants, suggesting that FIP origin might be related to the plant terrestrial colonization. All Arabidopsis FtsH complex-encoding genes were used as \"query\" sequences in search for homologous sequences, allowing us to classify the FtsH proteases in type A and B by Bayesian phylogenetic inference. Bayesian phylogenetic analyses were also run for FIP and FtsH types A and B proteases, independently. Mirrortree analysis supported coevolution between FIP and type A FtsH proteases. On the other hand, no correlation was found between FIP and type B FtsH homologues, which support our previous experimental observations. In addition, the FIP bearing cluster could be recovered in a more complete type A FtsH phylogeny. Subsequent analyzes have shown that both interacting proteins are extensively under negative selection and that type A FtsH are very conserved, mainly in its inner domains.
3

Evolução convergente da protease FtsH5 de Arabidopsis thaliana e seu regulador negativo putativo FIP (FtsH5 interacting protein) / Convergent evolution of Arabidopsis thaliana FtsH5 protease and its putative negative regulator FIP (FtsH5 interacting protein)

Marcos Araújo Castro e Silva 02 March 2015 (has links)
As metaloproteases AAA/FtsH são componentes chave do controle da qualidade das proteínas inseridas nas membranas de mitocôndrias e cloroplastos. Em Arabidopsis thaliana, as proteases FtsH presentes nas membranas dos tilacóides formam um complexo heterohexamérico composto pelas subunidades FtsH1/FtsH5 (tipo A) e FtsH2/FtsH8 (tipo B). Este complexo está envolvido na reciclagem de proteínas foto-danificadas, especialmente da proteína D1, centro de reação do PSII. Algumas linhas de evidências indicam ainda que existe um limiar de concentração das proteases FtsH, necessário para a correta formação e desenvolvimento dos cloroplastos. Apesar da extensiva caracterização genética e molecular das proteases FtsH, o mecanismo regulatório do complexo FtsH dos cloroplastos não foi totalmente elucidado até o momento, contudo existem evidências de que a sua ativação pode estar relacionada a alta incidência luminosa e a outras condições de estresse. A presença de fatores proteicos auxiliares, foi testada como hipótese alternativa por nosso grupo, através do uso da protease FtsH5 como isca em um ensaio de duplo híbrido de leveduras. Este ensaio identificou uma proteína interagente putativa, nomeada FIP (FtsH5 Interacting Protein), a qual comprovadamente interage com FtsH5 e está localizada nas membranas dos tilacóides. De modo a investigar o papel regulatório putativo de FIP sobre a atividade do complexo FtsH, nós analisamos os padrões de expressão em uma ampla gama de condições de estresse a partir de dados públicos de microarranjos de DNA. Os perfis de expressão indicam que FIP pode ser um regulador negativo da atividade do complexo. Os resultados também sugerem que o complexo pode estar envolvido na resposta do cloroplasto a diferentes tipos de condições de estresse. O estudo da história evolutiva das proteínas interagentes FtsH5 e FIP evidenciou que as sequências homólogas a FIP são encontradas exclusivamente em musgos e plantas superiores, sugerindo assim que a origem de FIP pode estar relacionada a colonização terrestre. Todos os genes codificantes das proteases FtsH do complexo foram usados como \"query\" na busca por sequências homólogas, permitindo a classificação das proteases FtsH nos tipos A e B por inferência filogenética Bayesiana. Análises filogenéticas Bayesianas também foram feitas para FIP e as proteases FtsH tipos A e B, independentemente. A análise Mirrortree suportou a existência de coevolução entre FIP e as proteases FtsH tipo A. Por outro lado, nenhuma correlação foi encontrada entre FIP e as proteases FtsH tipo B, o que corrobora nossas observações experimentais anteriores. Além disso, o agrupamento portador de homólogos FIP pôde ser recuperado em uma filogenia mais completa das proteases FtsH do tipo A. Análises subsequentes mostraram que ambas as proteínas interagentes estão extensivamente sobre seleção negativa e que proteases FtsH tipo A são bastante conservadas, principalmente nos seus domínios internos. / Eukaryotic AAA/FtsH metalloproteases display a key role in the protein quality control of membrane-inserted proteins in mitochondria and chloroplasts. In Arabidopsis thaliana, chloroplast thylakoidal membranes FtsH proteases form a heterohexameric complex made by FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. This complex is involved in protein turnover of photo-damaged proteins, in particular the D1 protein at the PSII reaction center. Several lines of evidence also indicate that a FtsH threshold level is necessary for the proper formation and development of chloroplasts. Despite extensive genetic and molecular characterization of the FtsH proteases, the regulatory mechanism of the FtsH complex in chloroplasts has not yet been fully elucidated, however, there are evidences that its activation might be related to high light incidence and other stress conditions. The presence of auxiliary protein factors, as an alternative hypothesis, was tested by our group, through the use of the protease FtsH5 as bait in a yeast two-hybrid assay. This essay identified a putative interacting protein named FIP (FtsH5 Interacting Protein), which has been proved to interact with FtsH5 and be located at the thylakoid membranes. In order to investigate a putative regulatory role of FIP on FtsH complex activity, we analyzed gene expression patterns in a wide range of stress conditions from public DNA microarray data. The expression profiles indicate that FIP could be a negative regulator of the FtsH complex activity. The results also suggest that the complex may be involved in the chloroplast response to different types of stress conditions. In order to shed some light on the evolutionary history of FtsH5 and FIP interacting proteins, we have shown that FIP\'s homologous sequences were exclusively found in mosses and higher plants, suggesting that FIP origin might be related to the plant terrestrial colonization. All Arabidopsis FtsH complex-encoding genes were used as \"query\" sequences in search for homologous sequences, allowing us to classify the FtsH proteases in type A and B by Bayesian phylogenetic inference. Bayesian phylogenetic analyses were also run for FIP and FtsH types A and B proteases, independently. Mirrortree analysis supported coevolution between FIP and type A FtsH proteases. On the other hand, no correlation was found between FIP and type B FtsH homologues, which support our previous experimental observations. In addition, the FIP bearing cluster could be recovered in a more complete type A FtsH phylogeny. Subsequent analyzes have shown that both interacting proteins are extensively under negative selection and that type A FtsH are very conserved, mainly in its inner domains.
4

Caracterização da interação entre FIP e FtsH5: mapeamento da região de interação e análise de expressão em condições de estresse / Characterization of the interaction between FIP and FtsH5: Mapping the region of interaction and analysis of expression under stress conditions

Braga, Wiliane Garcia da Silva 26 July 2013 (has links)
Proteínas FtsH são metaloproteases pertencentes à família AAA (ATPases Associadas a Diversas Atividades Celulares), e estão presentes em todos os reinos dos seres vivos. Estas proteases utilizam a energia liberada da hidrólise do ATP para desempenhar suas diversas atividades celulares. Em Escherichia coli, as proteases FtsH se organizam em um homohexamero na membrana plasmática, sendo que este complexo atua na degradação de proteínas mal dobradas. Em Arabidopsis, o hetero-complexo FtsH localizado na membrana dos tilacóides é formados por isômeros do tipo A (FtsH1/FtsH5) e do tipo B (FtsH2/FtsH8). Sua atividade proteolítica está relacionada ao controle de qualidade organelar, degradando proteínas mal dobradas e de vida curta. O complexo está envolvido também na degradação da proteína D1 do PSII, danificada por danos foto-oxidativo. Embora as FtsH cloroplastidiais sejam bem caracterizadas em termos genéticos e moleculares, o mecanismo de regulação do complexo ainda não foi esclarecido, o que torna interessante a busca por fatores proteicos adicionais. Em investigações anteriores nosso grupo de pesquisa encontrou um candidato potencial, denominado FIP (FtsH5 Interacting Protein), que pode modular a atividade ATPásica e/ou proteásica do complexo. Fip está presente na membrana dos tilacóides e mostrou interação com FtsH5 in vivo e in vitro. Neste trabalho foram realizados ensaios de duplo híbrido de leveduras, utilizando deleções da proteína FIP, bem como substituições de resíduos de cisteína por alanina. Os resultados revelaram que a interação entre FIP e FtsH5 é mantida somente quando duas regiões ricas em cisteína estão presentes na sequência de FIP. Essa região compreende 46 aminoácidos, com 4 resíduos de cisteína conservados, e ensaios com 7 diferentes substituições desses resíduos por alanina não mostraram interação com FtsH5, o que corrobora a hipótese de que os resíduos de cisteína são necessários para a interação. Experimentos de análise de expressão utilizando PCR em tempo real, sob condições de estresse salino e estresse a frio, revelaram que os genes que codificam FIP e FtsH5 têm sua expressão regulada de modo antagônico, o que sugere que FIP possa atuar como modulador negativo da atividade proteásica do complexo FtsH. / Metalloprotease FtsH proteins are members of the AAA family (ATPases Associated with Diverse Cellular Activities), and are present in all kingdoms of living organisms. These proteases use energy of ATP hydrolysis to perform its various cellular activities. In Escherichia coli, FtsH proteases are organized in a homo-hexamer in the cytoplasmic membrane, and this complex acts in the degradation of misfolded proteins. In Arabidopsis, the FtsH hetero-complex located in the thylakoid membrane is formed by type A (FtsH1/FtsH5) and type B (FtsH2/FtsH8) isomers. Its proteolytic activity is involved in organellar quality control by degrading misfolded and short-lived proteins. The complex is also involved in the degradation of the D1 protein of PSII, damaged by photo-oxidative damage. Although the chloroplast FtsH are well characterized genetically and molecularly, the regulatory mechanism of the complex remains unclear, which makes it interesting to search for additional protein factors. In earlier studies our research group has found a potential candidate called FIP (FtsH5 Interacting Protein), which can modulate the ATPase and/or protease activity of the complex. FIP is present in the membrane of the thylakoids and showed interaction with FtsH5 in vivo and in vitro. In this study yeast two-hybrid assays were performed using FIP protein deletions, and substitutions of cysteine to alanine residues. The results showed that the interaction between FIP and FtsH5 is maintained only when two cysteine rich regions are present in the sequence of FIP. This region contains 46 amino acids with four conserved cysteine residues and 7 different assays with alanine replacements of these residues showed no interaction with FtsH5, which corroborates the hypothesis that the cysteine residues are required for the interaction. Expression experiments analysis using realtime PCR, under conditions of salt stress and cold stress, revealed that the genes encoding FtsH5 and FIP have its expression regulated in an antagonistic way, suggesting that FIP can act as a negative modulator of the activity FtsH protease of the complex.
5

Caracterização do gene ftsH de Streptomyces sp Y7 / Caracterization of ftsH gene of Streptomyces sp Y7

Paixão, Cinthia Ferreira da 14 December 2002 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-11-10T17:07:26Z No. of bitstreams: 2 Dissertação - Cintia Ferreira da Paixão - 2002.pdf: 501587 bytes, checksum: f00ca727b973e5102f7af9c24d03a9ee (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2014-11-10T17:07:39Z (GMT) No. of bitstreams: 2 Dissertação - Cintia Ferreira da Paixão - 2002.pdf: 501587 bytes, checksum: f00ca727b973e5102f7af9c24d03a9ee (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-10T17:07:39Z (GMT). No. of bitstreams: 2 Dissertação - Cintia Ferreira da Paixão - 2002.pdf: 501587 bytes, checksum: f00ca727b973e5102f7af9c24d03a9ee (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2002-12-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The actinomycets are Gram-positive bacterias, aerobic with rich DNA in G+C (larger than 60%) and immobile. They are found practically in all the environment, forming ramified filaments or hyphae that persist in the mycelium form. The Streptomyces constitutes 90% of the isolated actinomycets of the soils, in spite of they are also found in aquatic atmospheres and interior of some plants. They stand out for the diversity of production of hidrolytics enzymes and antibiotics, 70% of the know antibiotics are produced by those microorganisms. Aiming to clone genes with biotechnological interest, a genomic libraries of the Streptomyces sp Y7 isolated of the soil of Cerrado was constructed. After the analyses of the sequences of the genomics libraries of Streptomyces sp Y7, it was selected a plasmid named pFS8, that displayed similarity with ftsH genes. The ftsH gene encodes a metalloprotease ATPase and Zn+2 dependent, belongs to the AAA family (ATPases associated with a variety of cellular activities). It is involved with several cellular functions such as secretory proteins export and degradation of transcriptional factors (sigma 32 and Lambda CII). The data of sequencing showed that the ftsH gene was incomplete. In order to characterize if the product of this gene showed biological activity, it was made tests to evaluate the functionality of the fusions proteins in an ftsH-negative E.coli strain AR3291. AR3291 cells transformed with this plasmid showed a general growth advantage upon the cells AR3291. The protein produced did not present toxicant effects for cells AR3289, which had normal ftsH gene. The truncated protein obtained was also analyzed to prediction of the structure “coiled-coil”, that is common to the other FtsH studied, and the results showed those truncated proteins did nor form “coiled-coil” structure. We also tested whether fusion proteins decreased or inhibited the defective transfer of citosolic proteins. / Os actinomicetos são bactérias Gram-positivas, aeróbicas e com DNA rico em G+C (mais que 60%). São encontrados em quase todos ambientes, formando hifas ramificadas que persistem na forma de micélio. Os Streptomyces constituem cerca de 90% dos actinomicetos isolados de solos, apesar de serem encontrados em ambientes aquáticos e no interior de algumas plantas. Os Streptomyces são grandes produtores de enzimas hidrolíticas e antibióticos, 70 % dos antibióticos conhecidos são produzidos por esses microrganismos. Com o objetivo de clonar genes de interesse biotecnológico, foi construída uma biblioteca genômica de Streptomyces sp Y7 isolado de solo de Cerrado. A partir das análises das seqüências das bibliotecas genômicas foi selecionado o plasmídeo pFS8 que apresentava homologia com o gene ftsH. O gene ftsH codifica uma metaloprotease ATP Zn2+ dependente, pertencente a família AAA (ATPases Associadas a diversas Atividades celulares). Os dados do seqüenciamento mostraram que o gene ftsH clonado estava incompleto. A fim de caracterizar o produto do gene ftsH, foram feitos testes para avaliar a funcionalidade dessas proteínas de fusão em células mutadas para o gene ftsH (AR3291). A proteína de fusão produzida por pFS9 é capaz de recuperar o crescimento das células AR3291 e a proteína produzida por pFS8 não apresenta efeitos tóxicos para células AR3289, que não têm mutação para o gene ftsH. Também foi analisado se as proteínas produzidas por pFS8 e pFS9 formam a estrutura “coiled coil” que é comum aos outros organismos estudados. Outra característica analisada nesse trabalho foi a capacidade da proteína produzida por pFS9 diminuir ou inibir a translocação anormal de proteínas para o meio externo. Os resultados mostram que essa proteína não inibe a translocação de proteínas para o meio externo, enquanto que a proteína produzida por pFS8 apresenta efeito contrário a proteína produzida por pFS9.
6

Caracterização da interação entre FIP e FtsH5: mapeamento da região de interação e análise de expressão em condições de estresse / Characterization of the interaction between FIP and FtsH5: Mapping the region of interaction and analysis of expression under stress conditions

Wiliane Garcia da Silva Braga 26 July 2013 (has links)
Proteínas FtsH são metaloproteases pertencentes à família AAA (ATPases Associadas a Diversas Atividades Celulares), e estão presentes em todos os reinos dos seres vivos. Estas proteases utilizam a energia liberada da hidrólise do ATP para desempenhar suas diversas atividades celulares. Em Escherichia coli, as proteases FtsH se organizam em um homohexamero na membrana plasmática, sendo que este complexo atua na degradação de proteínas mal dobradas. Em Arabidopsis, o hetero-complexo FtsH localizado na membrana dos tilacóides é formados por isômeros do tipo A (FtsH1/FtsH5) e do tipo B (FtsH2/FtsH8). Sua atividade proteolítica está relacionada ao controle de qualidade organelar, degradando proteínas mal dobradas e de vida curta. O complexo está envolvido também na degradação da proteína D1 do PSII, danificada por danos foto-oxidativo. Embora as FtsH cloroplastidiais sejam bem caracterizadas em termos genéticos e moleculares, o mecanismo de regulação do complexo ainda não foi esclarecido, o que torna interessante a busca por fatores proteicos adicionais. Em investigações anteriores nosso grupo de pesquisa encontrou um candidato potencial, denominado FIP (FtsH5 Interacting Protein), que pode modular a atividade ATPásica e/ou proteásica do complexo. Fip está presente na membrana dos tilacóides e mostrou interação com FtsH5 in vivo e in vitro. Neste trabalho foram realizados ensaios de duplo híbrido de leveduras, utilizando deleções da proteína FIP, bem como substituições de resíduos de cisteína por alanina. Os resultados revelaram que a interação entre FIP e FtsH5 é mantida somente quando duas regiões ricas em cisteína estão presentes na sequência de FIP. Essa região compreende 46 aminoácidos, com 4 resíduos de cisteína conservados, e ensaios com 7 diferentes substituições desses resíduos por alanina não mostraram interação com FtsH5, o que corrobora a hipótese de que os resíduos de cisteína são necessários para a interação. Experimentos de análise de expressão utilizando PCR em tempo real, sob condições de estresse salino e estresse a frio, revelaram que os genes que codificam FIP e FtsH5 têm sua expressão regulada de modo antagônico, o que sugere que FIP possa atuar como modulador negativo da atividade proteásica do complexo FtsH. / Metalloprotease FtsH proteins are members of the AAA family (ATPases Associated with Diverse Cellular Activities), and are present in all kingdoms of living organisms. These proteases use energy of ATP hydrolysis to perform its various cellular activities. In Escherichia coli, FtsH proteases are organized in a homo-hexamer in the cytoplasmic membrane, and this complex acts in the degradation of misfolded proteins. In Arabidopsis, the FtsH hetero-complex located in the thylakoid membrane is formed by type A (FtsH1/FtsH5) and type B (FtsH2/FtsH8) isomers. Its proteolytic activity is involved in organellar quality control by degrading misfolded and short-lived proteins. The complex is also involved in the degradation of the D1 protein of PSII, damaged by photo-oxidative damage. Although the chloroplast FtsH are well characterized genetically and molecularly, the regulatory mechanism of the complex remains unclear, which makes it interesting to search for additional protein factors. In earlier studies our research group has found a potential candidate called FIP (FtsH5 Interacting Protein), which can modulate the ATPase and/or protease activity of the complex. FIP is present in the membrane of the thylakoids and showed interaction with FtsH5 in vivo and in vitro. In this study yeast two-hybrid assays were performed using FIP protein deletions, and substitutions of cysteine to alanine residues. The results showed that the interaction between FIP and FtsH5 is maintained only when two cysteine rich regions are present in the sequence of FIP. This region contains 46 amino acids with four conserved cysteine residues and 7 different assays with alanine replacements of these residues showed no interaction with FtsH5, which corroborates the hypothesis that the cysteine residues are required for the interaction. Expression experiments analysis using realtime PCR, under conditions of salt stress and cold stress, revealed that the genes encoding FtsH5 and FIP have its expression regulated in an antagonistic way, suggesting that FIP can act as a negative modulator of the activity FtsH protease of the complex.
7

Mécanisme d'importation des colicines : détournement des fonctions physiologiques des protéines FtsH et FkpA / Colicins uptake : hijacking of the physiological functions of FtsH and FkpA proteins

Barnéoud arnoulet, Aurélie 29 October 2010 (has links)
Les colicines sont des toxines protéiques sécrétées par Escherichia coli ou des espèces apparentées. Leur mécanisme d'action se décompose en plusieurs étapes impliquant des domaines structurellement distincts de la toxine : le domaine central interagit avec un récepteur spécifique de membrane externe, le domaine N-terminal est transloqué à travers la membrane externe via un translocateur, puis transite dans le périplasme et le domaine C-terminal porte l’activité létale. L’étape de transit des colicines dites du groupe A implique l'interaction du domaine N-terminal de la colicine avec les protéines du système Tol. Ce système est formé de cinq protéines : TolQ, TolR, TolA, TolB et Pal. Le système TonB, composé des protéines TonB, ExbB et ExbD, est quant à lui parasité par les colicines dites du groupe B. La combinaison de techniques in vivo et in vitro, nous a permis de mettre en évidence pour la première fois l’interaction d’une colicine avec la protéine TolQ. Nous avons également montré que le clivage protéolytique de la protéine TolA, une protéine clé du système Tol, contrôle les interactions séquentielles engagées entre les colicines du groupe A et les composants de leur machinerie d’import chez E. coli. La colicine interagit avec TolB, puis TolA et finalement avec TolR et/ou TolQ. Nous avons également pu attribuer un rôle à la protéase FtsH dans ce mécanisme de dégradation. Parallèlement, nous avons entrepris de caractériser la colicine TonB-dépendante appelée colicine M (ColM), la seule colicine connue à ce jour capable de perturber la synthèse de peptidoglycane et dont l’activité nécessite la présence de la protéine périplasmique FkpA, un chaperon possédant une activité peptidyl-prolyl isomérase. Nous avons proposé une nouvelle approche pour étudier la ColM et délimiter plus précisément ses domaines afin d’identifier la séquence minimale requise pour sa toxicité. Nous avons montré que dans E. coli, la production périplasmique de la ColM (sp-ColM) est toxique et que son activité dépend de FkpA. Le domaine minimal requis pour cette toxicité correspond aux 153 derniers acides aminés C-terminaux deColM. Contrairement à la ColM entière, la toxicité de ce domaine C-terminal dans le périplasme d’ E. coline requiert pas FkpA.L’ensemble des données montrent que les colicines sont capables de parasiter des systèmes bactériens pour pénétrer dans la cellule et aussi de détourner la fonction physiologique de certaines protéines pour atteindre leurs cibles. / Colicins are toxin proteins secreted by Escherichia coli or related bacteria species. The actionmechanism of the colicins can be divided into several steps that involve distinct structural domains: thebinding of its central domain to an outer membrane specific receptor, the translocation of its N-terminaldomain through the outer membrane, the transit of this same domain through the periplasm and the lethalactivity carried by the C-terminal domain. The transit step of the group A colicins requires the interactionof colicin N-terminal domain with the Tol system which is composed of five proteins: TolQ, TolR, TolA,TolB and Pal. The TonB system, composed of TonB, ExbB and ExbD, is parasitized by the group Bcolicins. Using a combination of in vitro and in vivo experiments, we identified for the first time aninteraction between a colicin and the TolQ protein. We have also shown that the proteolytic cleavage ofthe TolA protein, a key protein of the Tol system, controls the sequential interactions of the group Acolicins with the components of their import machinery in E. Coli and we assigned a role to FtsH proteasein this degradation mechanism. We defined that the colicin interacts first with the TolB protein, then withTolA, and finally with TolR and/or TolQ.In parallel, we undertook the characterization of the TonB-dependent colicin M (ColM), the only colicinknown to be able to disrupt the peptidoglycan synthesis and that requires for its toxic activity the presenceof FkpA, a chaperone and peptidyl propyl isomerase protein located in the periplasm. We proposed a newapproach to investigate the in vivo activity of ColM designed to identify the different domains of ColMand the minimal sequence that retains toxic activity. We have shown that in E. coli, the periplasmicproduction of ColM is toxic and that its activity is FkpA dependent. The minimal domain required fortoxicity corresponds to the C-terminal last 153 amino acids of ColM. Unlike the full-length protein, thisdomain produced in the E. coli periplasm does not require FkpA for toxic activity.All these data show that colicins are able to parasitize bacterial systems to enter the cell and also to divertthe physiological function of certain proteins to achieve their targets
8

The Role of Proteases in Plant Development

Garcia-Lorenzo, Maribel January 2007 (has links)
Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Systematic comparative analysis of the available sequenced genomes of two model organisms led to the identification of an increasing number of protease genes, giving insights about protein sequences that are conserved in the different species, and thus are likely to have common functions in them and the acquisition of new genes, elucidate issues concerning non-functionalization, neofunctionalization and subfunctionalization. The involvement of proteases in senescence and PCD was investigated. While PCD in woody tissues shows the importance of vacuole proteases in the process, the senescence in leaves demonstrate to be a slower and more ordered mechanism starting in the chloroplast where the proteases there localized become important. The light-harvesting complex of Photosystem II is very susceptible to protease attack during leaf senescence. We were able to show that a metallo-protease belonging to the FtsH family is involved on the process in vitro. Arabidopsis knockout mutants confirmed the function of FtsH6 in vivo.
9

Role FtsH proteas v sinici Synechocystis sp. PCC 6803 / Role of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803

KRYNICKÁ, Vendula January 2015 (has links)
This thesis focuses on the functional and structural characterization of FtsH proteases in Synechocystis PCC 6803. One of the aims was to determine localization and subunit organization of FtsH homologues in Synechocystis cells using GST and GFP tagged FtsH derivatives. The main result of the thesis is identification of two FtsH hetero-oligomeric complexes and one homo-oligomeric complex in Synechocystis cells. The large part of the thesis is aimed at establishing the role of the first hetero-oligomeric complex, FtsH2/FtsH3, in quality control of Photosystem II and at identification of a mechanism, how its substrate proteins D1 and D2 are recognized. Another part is dedicated to characterization of the second hetero-oligomeric complex, FtsH1/FtsH3, which consists of two essential FtsH homologues and which is here identified as an important regulatory element in maintaining iron homeostasis.
10

Translocation des colicines de type ribonuclease à travers la membrane interne bacterienne / Translocation of nuclease colicins D and E3 through the inner membrane of E. coli

Chauleau, Mathieu 23 September 2011 (has links)
Les colicines sont des toxines antibactériennes d’Escherichia coli qui sont relâchées par les cellules productrices (colicinogènes) dans le milieu extracellulaire en réponse à des conditions de stress environnementaux. Les colicines D et E3 sont des RNases qui clivent respectivement les tRNAArg et le 16S RNA ribosomique. Les deux colicines parvenues au cytoplasme de la cellule cible provoquent ainsi la mort par inactivation de la machinerie de biosynthèse des protéines. L’import de ces deux colicines nécessite d’abord le détournement de deux systèmes cellulaires différents (FepA/TonB ou BtuB/Tol) de leur fonction physiologique, permettant leur translocation à travers la membrane externe. L’idée que par la suite la translocation à travers la membrane interne nécessite au préalable une étape de processing des colicines nucléases est ancienne, mais elle n’a jamais été démontrée formellement. Nos travaux ont permis de montrer qu’une coupure endoprotéolytique des deux colicines constitue une étape de « processing » essentielle de leur action toxique. Nous avons détecté la présence du domaine C-terminal catalytique des deux colicines dans le cytoplasme des cellules cibles préalablement exposées à la toxine. Les mêmes fragments processés (PF) ont été identifiés dans les cellules sensibles et dans les cellules immunes contre ces colicines, qui sont protégées par une protéine d’immunité spécifique, formant un complexe neutre avec le domaine catalytique. Nous avons démontré que la protéase essentielle de la membrane interne, FtsH, est nécessaire au processing des deux colicines pendant leur import. Nous avons montré aussi que la signal-peptidase LepB, une autre enzyme essentielle de la membrane interne, interagit directement avec le domaine central de la colicine D in vitro et ainsi elle est un facteur protéique spécifiquement nécessaire au processing de la colicine D. Cependant ce n’est pas l’activité catalytique de LepB qui est impliquée dans la toxicité de la colicine D, mais elle jouerait un rôle structural. LepB ainsi faciliterait probablement l’association de la colicine D avec la membrane interne en vue de la reconnaissance de la toxine par FtsH. Nous avons aussi montré que la protéase OmpT de la membrane externe est responsable d’une coupure endoprotéolytique alternative, qui refléte probablement son rôle bien connu dans le système de défense des bactéries contre les peptides anti-microbiens. Même si cette coupure in vitro permet de libérer le domaine catalytique des colicines D et E3, il est établit maintenant que la protéase OmpT n’est pas impliquée dans le processing des colicines durant leur import dans le cytoplasme. / Colicins are antibacterial toxins of Escherichia coli that are released into the extracellular medium in response to environmental stress conditions. Colicin D is an RNase that cleaves the anticodon loop of all four isoaccepting tRNAArg. Colicin E3 cleaves 16 S ribosomal RNA. Both colicins provoke cell death by inactivating the protein biosynthetic machinery. Colicin producer cells are protected against both endogenous and exogenous toxin molecules by the constitutive expression of a cognate immunity protein, which forms a tight heterodimer complex with the nuclease domain of the colicin. The import of both colicins first requires the “hijack” of some distinct functions of the target cell (namely the BtuB/Tol and FepA/TonB systems, respectively), this allowing their translocation across the outer membrane. It has long been suggested that the import of nuclease colicins requires protein processing during the translocation across the inner membrane; however it had never been formally demonstrated. Our work shows that the two different RNase colicins E3 and D undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms (PF) were identified in both colicin-sensitive cells and in cells immune to colicins, because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm

Page generated in 0.0366 seconds