Spelling suggestions: "subject:"gromov"" "subject:"promov""
31 |
Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg / Around geometric analysis 1) Boundary behavior of harmonic functions 2) Rectifiability in the Heisenberg groupPetit, Camille 19 June 2012 (has links)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière. / In this thesis, we are interested in two topics of geometric analysis. The first one is concerned with the asymptotic behaviour of harmonic functions in connection with geometry on graphs and manifolds. We study criteria for convergence at boundary of harmonic functions such as non-tangential boundedness, finiteness of non-tangential energy or finiteness of the energy density. We deal with Gromov hyperbolic manifolds, Gromov hyperbolic graphs, Diestel-Leader graphs and with an abstract frame to obtain criteria at minimal Martin boundary points. The methods, coming from probability theory and metric geometry, use the relation between harmonic functions and martingales. The second topic concerns the rectifiability properties of 1-dimensional sets in the Heisenberg group in connection with the boundedness of singular integral operators. We extend to this sub-Riemannian setting parts of the theory of uniformly rectifiable sets due to David and Semmes. In particular, we obtain a geometric traveling salesman theorem which provides a condition for an Ahlfors regular set of the first Heisenberg group to be contained in an Ahlfors regular curve.
|
32 |
Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante / Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvatureBelraouti, Mehdi 20 June 2013 (has links)
Dans cette thèse, nous nous intéressons aux espaces temps dit globalement hyperboliques Cauchy compacts. Ce sont des espaces temps qui admettent une fonction, dite fonction temps de Cauchy, propre qui croit strictement le long des courbes causales inextensibles. Les niveaux de telles fonctions sont des hypersurfaces de type espace appelées hypersurfaces de Cauchy. La donnée d'une fonction temps définit naturellement une famille à 1-paramètres d'espaces métriques. Notre but est d'étudier le comportement asymptomatique de ces familles d'espaces métriques Il y a deux cas de figure à considérer : le premier étant le comportement asymptomatique dans le passé ; le deuxième est celui du comportement asymptomatique dans le futur. Plus de conditions géométriques sur l'espace temps et les fonctions temps à considérer seront nécessaires / In this thesis we're interested in globally hyperbolic Cauchy compact space-times. These are space-times that possess a proper function, called Cauchy time function, which ist strictly increasing along inextensible causal curves. A Cauchy time function defines naturally a 1-parameter family of metric spaces. One asks the natural and important question of the asymptomatic behaviour of this family with respect to the time : when time goes to 0 and when it goes towards infinity. Of course additional geometric condition on the space-ime and the time function will be necessary for a more appropriate study
|
33 |
Cobordismes lagrangiens et uniréglageLétourneau, Vincent 11 1900 (has links)
Ce mémoire traite de la question suivante: est-ce que les cobordismes lagrangiens préservent l'uniréglage? Dans les deux premiers chapitres, on présente en survol la théorie des courbes pseudo-holomorphes nécessaire. On examine d'abord en détail la preuve que les espaces de courbes $ J $-holomorphes simples est une variété de dimension finie. On présente ensuite les résultats nécessaires à la compactification de ces espaces pour arriver à la définition des invariants de Gromov-Witten. Le troisième chapitre traite ensuite de quelques résultats sur la propriété d'uniréglage, ce qu'elle entraine et comment elle peut être démontrée. Le quatrième chapitre est consacré à la définition et la description de l'homologie quantique, en particulier celle des cobordismes lagrangiens, ainsi que sa structure d'anneau et de module qui sont finalement utilisées dans le dernier chapitre pour présenter quelques cas ou la conjecture tient. / In this dissertation we study the following question: do Lagrangian cobordisms preserve uniruling? In the two first chapters, the necessary pseudoholomorphic curves theory is quickly presented. We first study in detail the proof that the spaces of simple $ J $-holomorphic curves is a manifold of finite dimension. We then present the necessary results to produce the appropriate compactification of these spaces to get to the definition of Gromov-Witten invariants. In the third chapter then some results on the property of uniruling are presented: what are its consequences, how can it be obtained. In the fourth chapter quantum homology is defined, in particular for Lagrangian cobordism, and its ring and module structures are studied which are finally used in the last chapter to present examples of cobordisms which preserves uniruling.
|
34 |
Automorphismes réels d'un fibré, opérateurs de Cauchy-Riemann et orientabilité d'espaces de modulesCrétois, Rémi 08 December 2011 (has links) (PDF)
L'ensemble des opérateurs de Cauchy-Riemann réels sur un fibré vectoriel complexe N muni d'une structure réelle cN au-dessus d'une courbe réelle est un espace affine de dimension infinie. L'union des déterminants de ces opérateurs est un fibré en droites réelles au-dessus de cet espace. L'objet de cette thèse est l'étude de l'action des automorphismes du fibré (N, cN) sur les orientations de ce fibré déterminant ainsi que de ses conséquences sur l'orientabilité des espaces de modules de courbes réelles dans une variété symplectique réelle. Nous commençons par interpréter l'action des automorphismes qui induisent l'identité sur le fibré en droites complexes det(N) en termes d'action sur les structures Pin± de la partie réelle de N. Nous remarquons ensuite qu'un automorphisme au-dessus de l'identité agit sur les classes de bordisme de structures Spin réelles de la courbe et nous utilisons cette action afin d'obtenir une description en termes topologiques de l'action sur les orientations du fibré déterminant. Enfin, pour comprendre l'action des automorphismes de (N, cN) qui ne relèvent pas l'identité, nous introduisons la notion de relevé d'un difféomorphisme de la courbe associé à un diviseur compatible avec (N, cN) et nous calculons le signe de l'action d'un tel relevé sur les orientations du fibré déterminant. Dans une dernière partie, nous appliquons les résultats obtenus à l'étude de l'orientabilité des espaces de modules de courbes réelles dans des variétés symplectiques réelles. Nous calculons en particulier la première classe de Stiefel-Whitney de l'espace de modules des courbes réelles dans l'espace projectif complexe de dimension trois.
|
35 |
Processus à valeurs dans les arbres aléatoires continusHoscheit, Patrick 10 December 2012 (has links) (PDF)
Cette thèse est consacrée à l'étude de certains processus aléatoires à valeurs dans les arbres continus. Nous définissons d'abord un cadre conceptuel pour cette étude, en construisant une topologie polonaise sur l'espace des R-arbres localement compacts, complets et munis d'une mesure borélienne localement finie. Cette topologie, dite de Gromov-Hausdorff-Prokhorov, permet alors la définition de processus de Markov à valeurs arbre. Nous donnons ensuite une nouvelle construction du processus d'élagage d'Abraham-Delmas-Voisin, qui est un exemple de processus qui prend ses valeurs dans les arbres de Lévy. Notre construction, qui dévoile une nouvelle structure généalogique des arbres de Lévy, est trajectorielle, et permet d'identifier explicitement les transitions du processus d'élagage. Nous appliquons cette description à l'étude de certains temps d'arrêt, comme le premier temps auquel le processus franchit une hauteur donnée. Nous décrivons le processus à cet instant grâce à une nouvelle décomposition de type spinal. Enfin, nous nous intéressons à la fragmentation d'Aldous-Pitman de l'arbre brownien d'Aldous. En particulier, nous étudions, à la suite d'Abraham et Delmas, l'effet de cette fragmentation sur les sous-arbres discrets de l'arbre brownien. Le nombre de coupures nécessaires avant d'isoler la racine, convenablement renormalisé, converge vers une variable aléatoire de Rayleigh ; nous donnons un théorème central limite qui précise les fluctuations autour de cette limite
|
36 |
Fibration theorems for collapsing Alexandrov spaces / 崩壊するAlexandrov空間に対するファイブレーション定理Fujioka, Tadashi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22974号 / 理博第4651号 / 新制||理||1668(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 山口 孝男, 教授 藤原 耕二, 教授 入谷 寛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
37 |
Benjamini-Schramm Convergence of Normalized Characteristic Numbers of Riemannian ManifoldsLuckhardt, Daniel 05 June 2018 (has links)
No description available.
|
38 |
Geometric Methods for Simplification and Comparison of Data SetsSinghal, Kritika 01 October 2020 (has links)
No description available.
|
39 |
Hyperbolic fillings of bounded metric spacesFagrell, Ludvig January 2023 (has links)
The aim of this thesis is to expand on parts of the work of Björn–Björn–Shanmugalingam [2] and in particular on the construction and properties of hyperbolic fillings of nonempty bounded metric spaces. In light of [2], we introduce two new parameters λ and ξ to the construction while relaxing a specific maximal-condition. With these modifications we obtain a slightly more flexible model that generates a larger family of hyperbolic fillings. We then show that every hyperbolic filling in this family possess the desired property of being Gromov hyperbolic. Next, we uniformize an arbitrary hyperbolic filling of this type and show that, under fairly weak conditions, the boundary of the uniformization is snowflake-equivalent to the completion of the metric space it corresponds to. Finally, we show that this unifomized hyperbolic filling is a uniform space. In summary, our construction generates hyperbolic fillings which satisfy the necessary conditions for it to serve its intended purpose of an analytical tool for further studies in [2, Chapters 9-13 ] or similar. As such, it can be regarded as an improvement to the reference model.
|
40 |
Gromov-Witten invariants via localization techniquesDizep, Noah January 2023 (has links)
Gromov-Witten invariants play a crucial role in symplectic- and enumerative Geometry as well as topological String Theory. Essentially, theseinvariants are a count of (pseudo)holomorphic curves of a given genus,going through n-marked points on a symplectic manifold. In the last fewdecades, this has been a huge research topic for both physicists as well asmathematicians, and breakthroughs in calculation techniques have beenmade using Mirror Symmetry. We investigate and explicitly calculateclosed genus zero Gromov-Witten invariants of toric Calabi-Yau threefolds, namely O(−3) → P2 and the resolved conifold. This will be doneby using localization techniques, mirror symmetry and the so called diskpartition function.
|
Page generated in 0.027 seconds