• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 25
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 81
  • 37
  • 33
  • 23
  • 18
  • 14
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Convergence of stochastic processes on varying metric spaces / 変化する距離空間上の確率過程の収束

Suzuki, Kohei 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19468号 / 理博第4128号 / 新制||理||1594(附属図書館) / 32504 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 矢野 孝次, 教授 上田 哲生, 教授 重川 一郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
62

Persistence, Metric Invariants, and Simplification

Okutan, Osman Berat 02 October 2019 (has links)
No description available.
63

A Quantum Lefschetz Theorem without Convexity

Wang, Jun 01 October 2020 (has links)
No description available.
64

QUANTUM COHOMOLOGY OF TORIC BUNDLES / トーリック束の量子コホモロジー

Koto, Yuki 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25088号 / 理博第4995号 / 新制||理||1713(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 入谷 寛, 教授 塚本 真輝, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
65

Invariants de Gromov-Witten et fibrations hamiltoniennes

Hyvrier, Clément January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
66

Gromov-Witten Theory of Blowups of Toric Threefolds

Ranganathan, Dhruv 31 May 2012 (has links)
We use toric symmetry and blowups to study relationships in the Gromov-Witten theories of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety. We prove an equivalence of certain invariants on blowups at only points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$ by showing that these invariants descend from the blowup. Further, the permutohedral variety has nontrivial automorphisms of its cohomology coming from toric symmetry. These symmetries can be forced to descend to the blowups at just points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. Enumerative consequences are discussed.
67

Espaces de longueur d'entropie majorée : rigidité topologique, adhérence des variétés, noyau de la chaleur

REVIRON, Guillemette 26 April 2005 (has links) (PDF)
Un problème classique est d'identifier des sous-ensembles (pré)compacts de l'ensemble des espaces métriques de longueur (la distance entre deux espaces étant celle de Gromov-Hausdorff) et d'y étudier la continuité, la rigidité ou la « bornitude » de certains invariants. Habituellement, on considère l'ensemble <B>R</B><sub><I>n,K,D</I></SUB> des variétés de dimension, courbure et diamètre bornés (par <I>n</I>, -<I>K</I><SUP>2</SUP> et <I>D</I>), qui n'est pas complet (la « bornitude » n'y découle donc pas d'une preuve unifiée de type compacité/continuité). Nous nous affranchissons des hypothèses de courbure en nous plaçant sur la famille <B>M</B><sub>δ,<I>H,D</I></sub> des classes d'isométries d'espaces métriques de longueur de diamètre et d'entropie (volumique) bornés par <I>D</I> et <I>H</I>, qui admettent un revêtement universel et dont le groupe fondamental est δ-non-abélien (i.e. vérifie certaines des propriétés algébriques de croissance des groupes fondamentaux de variétés de courbure négative). Nous montrons que l'entropie est peu sensible à des variations locales drastiques de la métrique ou de la topologie, donc que <B>M</B><sub>δ,<I>H,D</I></sub> est beaucoup plus grand que <B>R</B><sub><I>n,K,D</I></sub>. Nous prouvons cependant que <B>M</B><sub>δ,<I>H,D</I></sub> est complet, et que le sous-ensemble <B>M</B><sup>0</sup><sub>δ,<I>H,D,V</I></sub> (formé des variétés de courbure négative et de volume majoré par <I>V</I>) y est d'adhérence compacte. Sur <B>M</B><sup>0</sup><sub>δ,<I>H,D,V</I></sub> nous établissons des majorations uniformes du noyau de la chaleur qui impliquent la précompacité de cette famille pour la distance spectrale, ce qui assure une description des propriétés spectrales des espaces-limites. Sur <B>M</B><sub>δ,<I>H,D</I></sub> nous prouvons que l'entropie et le spectre marqué des longueurs (resp. le premier nombre de Betti) sont des fonctions lipschitziennes (resp. localement constantes) et nous comparons les volumes et les bornes inférieures de la courbure de deux variétés ε<sub>0</sub>-proches. La méthode s'appuie d'une part sur une estimation de type Bishop (mais sans hypothèse de courbure) du volume des boules, d'autre part sur le calcul d'un ε<sub>0</sub> := ε<sub>0</sub> (δ,<I>H,D</I>) universel tel qu'une ε<sub>0</sub>-approximation de Hausdorff (non continue) entre deux espaces <I>X</I> et <I>Y</I> de <B>M</B><sub>δ,<I>H,D</I></sub> induise un isomorphisme ρ entre les groupes d'automorphismes de leurs revêtements universels et se relève en une ε<sub>0</sub>-presque-isométrie ρ-équivariante entre ces revêtements (une version de ce résultat valable hors de <B>M</B><sub>δ,<I>H,D</I></sub> est aussi donnée).
68

Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann.

Borot, Gaetan 23 June 2011 (has links) (PDF)
La géométrie complexe est un outil puissant pour étudier les systèmes intégrables classiques, la physique statistique sur réseau aléatoire, les problèmes de matrices aléatoires, la théorie topologique des cordes, ...Tous ces problèmes ont en commun la présence de relations, appelées équations de boucle ou contraintes de Virasoro. Dans le cas le plus simple, leur solution complète a été trouvée récemment, et se formule naturellement en termes de géométrie différentielle sur une surface de Riemann : la "courbe spectrale", qui dépend du problème. Cette thèse est une contribution au développement de ces techniques et de leurs applications.Pour commencer, nous abordons les questions de développement asymptotique à tous les ordres lorsque N tend vers l'infini, des intégrales N-dimensionnelles venant de la théorie des matrices aléatoires de taille N par N, ou plus généralement des gaz de Coulomb. Nous expliquons comment établir, dans les modèles de matrice beta et dans un régime à une coupure, le développement asymptotique à tous les ordres en puissances de N. Nous appliquons ces résultats à l'étude des grandes déviations du maximum des valeurs propres dans les modèles beta, et en déduisons de façon heuristique des informations sur l'asymptotique à tous les ordres de la loi de Tracy-Widom beta, pour tout beta positif. Ensuite, nous examinons le lien entre intégrabilité et équations de boucle. En corolaire, nous pouvons démontrer l'heuristique précédente concernant l'asymptotique de la loi de Tracy-Widom pour les matrices hermitiennes.Nous terminons avec la résolution de problèmes combinatoires en toute topologie. En théorie topologique des cordes, une conjecture de Bouchard, Klemm, Mariño et Pasquetti affirme que des séries génératrices bien choisies d'invariants de Gromov-Witten dans les espaces de Calabi-Yau toriques, sont solution d'équations de boucle. Nous l'avons démontré dans le cas le plus simple, où ces invariants coïncident avec les nombres de Hurwitz simples. Nous expliquons les progrès récents vers la conjecture générale, en relation avec nos travaux. En physique statistique sur réseau aléatoire, nous avons résolu le modèle O(n) trivalent sur réseau aléatoire introduit par Kostov, et expliquons la démarche à suivre pour résoudre des modèles plus généraux.Tous ces travaux soulignent l'importance de certaines "intégrales de matrices généralisées" pour les applications futures. Nous indiquons quelques éléments appelant à une théorie générale, encore basée sur des "équations de boucles", pour les calculer
69

Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante

Belraouti, Mehdi 20 June 2013 (has links) (PDF)
Dans cette thèse, nous nous intéressons aux espaces temps dit globalement hyperboliques Cauchy compacts. Ce sont des espaces temps qui admettent une fonction, dite fonction temps de Cauchy, propre qui croit strictement le long des courbes causales inextensibles. Les niveaux de telles fonctions sont des hypersurfaces de type espace appelées hypersurfaces de Cauchy. La donnée d'une fonction temps définit naturellement une famille à 1-paramètres d'espaces métriques. Notre but est d'étudier le comportement asymptomatique de ces familles d'espaces métriques Il y a deux cas de figure à considérer : le premier étant le comportement asymptomatique dans le passé ; le deuxième est celui du comportement asymptomatique dans le futur. Plus de conditions géométriques sur l'espace temps et les fonctions temps à considérer seront nécessaires
70

Invariants de Gromov-Witten et fibrations hamiltoniennes

Hyvrier, Clément January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0239 seconds