Spelling suggestions: "subject:"hamiltonienne"" "subject:"hamiltoniennes""
1 |
Equations aux dérivées partielles à conditions initiales aléatoiresDe suzzoni, Anne-sophie 26 November 2012 (has links) (PDF)
Cette thèse porte sur des équations aux dérivées partielles hamiltoniennes à conditions initiales aléatoires. En effet, on étudie ici l'évolution de certaines mesures à travers le flot de telles équations. Cette étude suit deux axes.Premièrement, on considère le caractère globalement bien posé de l'équation d'onde non linéaire quand la donnée initiale est de faible régularité. Cette donnée initiale est une variable aléatoire et on obtient le caractère globalement bien posé de façon presque sûre par rapport à la mesure induite par cette variable. La faible régularité fait référence à l'espace auquel appartient les valeurs de la variable aléatoires et dénote une régularité moins contraignante que celle requise par la théorie déterministe.Dans certaines conditions, des propriétés d'invariance de la loi de la donnée initiale sont nécessaires à la démonstration du caractère bien posé. C'est pourquoi le deuxième axe comprend la question de l'invariance de mesures et leurs stabilités à travers le flot d'EDPs.On donne ainsi une loi invariante à travers le flot de l'équation d'onde cubique et une autre à travers celui de l'équation de Benjamin-Bona-Mahony (BBM). la mesure invariante pour BBM est telle que les amplitudes associées à chaque longueur d'onde de la solution sont des variables aléatoires indépendantes les unes des autres. On considère alors la stabilité de l'invariance pour BBM lorsqu'on ajoute des corrélations entre ces amplitudes.Enfin, en s'inspirant de la littérature physique à propos de la turbulence faible, on s'est demandé ce qu'il advenait de l'indépendance entre les amplitudes dans un contexte plus général. Plus précisément, on a cherché à si les covariances des amplitudes restent petites lorsque celles-ci sont initialement indépendantes et que le terme non quadratique de l'énergie associée à l'équation étudiée est très petit devant l'énergie totale.
|
2 |
Equations aux dérivées partielles à conditions initiales aléatoires / Partial differential equations with random initial dataDe suzzoni, Anne-Sophie 26 November 2012 (has links)
Cette thèse porte sur des équations aux dérivées partielles hamiltoniennes à conditions initiales aléatoires. En effet, on étudie ici l'évolution de certaines mesures à travers le flot de telles équations. Cette étude suit deux axes.Premièrement, on considère le caractère globalement bien posé de l'équation d'onde non linéaire quand la donnée initiale est de faible régularité. Cette donnée initiale est une variable aléatoire et on obtient le caractère globalement bien posé de façon presque sûre par rapport à la mesure induite par cette variable. La faible régularité fait référence à l'espace auquel appartient les valeurs de la variable aléatoires et dénote une régularité moins contraignante que celle requise par la théorie déterministe.Dans certaines conditions, des propriétés d'invariance de la loi de la donnée initiale sont nécessaires à la démonstration du caractère bien posé. C'est pourquoi le deuxième axe comprend la question de l'invariance de mesures et leurs stabilités à travers le flot d'EDPs.On donne ainsi une loi invariante à travers le flot de l'équation d'onde cubique et une autre à travers celui de l'équation de Benjamin-Bona-Mahony (BBM). la mesure invariante pour BBM est telle que les amplitudes associées à chaque longueur d'onde de la solution sont des variables aléatoires indépendantes les unes des autres. On considère alors la stabilité de l'invariance pour BBM lorsqu'on ajoute des corrélations entre ces amplitudes.Enfin, en s'inspirant de la littérature physique à propos de la turbulence faible, on s'est demandé ce qu'il advenait de l'indépendance entre les amplitudes dans un contexte plus général. Plus précisément, on a cherché à si les covariances des amplitudes restent petites lorsque celles-ci sont initialement indépendantes et que le terme non quadratique de l'énergie associée à l'équation étudiée est très petit devant l'énergie totale. / This thesis is about Hamiltonian partial differential equations with random initial data. Indeed, the evolution of particular measures are studied here through the flow of such equations. This study is done along two axis.First, the global well-posedness with initial data with low regularity is considered for the non linear wave equation. The initial datum is a random variable and the global well-posedness is obtained almost surely wrt the measure induced by this variable. The low regularity refers to the space which the values of the random initial datum belong to and means a regularity under the one given by deterministic theory.Some properties of invariance of the law of the initial datum are required in the proof of the global well-posedness under certain conditions. Hence, the second axis is the invariance of measures through the flow of PDEs and their stability.An invariant law is given for the cubic non linear wave equation and for the Benjamin-Bona-Mahony equation (BBM). The invariant measure for BBM is such that the amplitudes associated to each wavelength of the solution are random variables independent from each other. The stability of the invariance for BBM is considered when one adds correlations between these amplitudes.Finally, inspired by the Physics literature about wave turbulence, the stability of the independence between the amplitudes is investigated about. Namely, we tried to know if the covariances of the amplitudes remain small when they are initially independent and when the quadratic term of the energy associated to the equation is small compared to the total energy.
|
3 |
Intersections lagrangiennes pour les sous-variétés monotones et presque monotones / Lagrangian intersections for monotone and almost monotone submanifoldsKeddari, Nassima 26 September 2018 (has links)
Dans la première partie de cette thèse, on donne, sous certaines hypothèses, une minoration du nombre de points d’intersections d’une sous-variété Lagrangienne monotone L avec son image par une isotopie Hamiltonienne. Dans le cas où L est un espace K(pi, 1), et en particulier à courbure sectionnelle strictement négative, le minorant est 1 + beta1(L), où beta1 est le premier nombre de Betti à coefficients dans Z2. Une autre conséquence est la non-déplaçabilité d’un plongement Lagrangien monotone de RPn × K (où K est une sous-variété à courbure sectionnelle strictement négative telle que H1(K, Z) ≠ 0) dans certaines variétés symplectiques. Dans la seconde partie, on considère une sous-variété Lagrangienne monotone L non déplaçable. En utilisant l’homologie de Floer définie pour les Lagrangiennes qui sont C-1-proches de L, on obtient des informations sur son nombre de Maslov. De plus, si L peut être approchée par une suite de Lagrangiennes déplaçables, alors, sous certaines hypothèses topologiques sur L, l’énergie de déplacement des éléments de cette suite tend vers l’infini. / N the first part of the thesis, we give, under some hypotheses, a lower bound on the intersection number of a closed monotone Lagrangian submanifold L with its image by a generic Hamiltonianisotopy. For monotone Lagrangian submanifolds L which are K(pi, 1) and, in particular with negative sectional curvature, this bound is 1 + beta_1(L), where beta_1 is the first Betti number with coefficients in Z_2. Another consequence, is the non-displaceability of a monotone Lagrangian embedding of RPn x K (where K is a submanifold with negative sectional curvature such that H^1(K, Z) ≠ 0) in some symplectic manifolds. In the second part, given a closed monotone Lagrangian submanifold L, which is not displaceable, we use Floer homology defined on Lagrangians which are C^1 - close to L, to get information about it Maslov number. Besides, if L can be approached by a sequence of displaceable Lagrangians, then, under some topological assumptions on L, the displacement energy of the elements of this sequence converge to infinity.
|
4 |
Classical mechanisms of recollision and high harmonic generation / Mécanismes classiques de recollisions et génération d'harmoniques d'ordres élevésBerman, Simon 03 December 2018 (has links)
Trente ans après la démonstration de la production d'harmoniques laser par interaction laser-gaz non linéaire, la génération d'harmoniques d’ordre élevées (HHG) est utilisée pour sonder la dynamique moléculaire et réalise son potentiel technologique comme source compacte d'impulsions attosecondes XUV à la gamme de rayons X. Malgré les progrès expérimentaux, le coût de calcul excessif des simulations fondées sur les premiers principes et la difficulté de dériver systématiquement des modèles réduits pour l'interaction non perturbatif et à échelles multiples d'une impulsion laser intense avec un gaz macroscopique d'atomes ont entravé les efforts théoriques. Dans cette thèse, nous étudions des modèles réduits de premier principe pour HHG utilisant la mécanique classique. En utilisant la dynamique non linéaire, nous élucidons le rôle indispensable joué par le potentiel ionique lors des recollisions dans la limite du champ fort. Ensuite, en empruntant une technique de la physique des plasmas, nous dérivons systématiquement une hiérarchie de modèles hamiltoniens réduits pour l’interaction cohérente entre le laser et les atomes lors de la propagation des impulsions. Les modèles réduits permettent une dynamique électronique soit classique, soit quantique. Nous construisons un modèle classique qui concorde quantitativement avec le modèle quantique pour la propagation des composantes dominantes du champ laser. Dans une géométrie simplifiée, nous montrons que le rayonnement à fréquence anormalement élevée observé dans les simulations résulte de l’interaction délicate entre le piégeage d’électrons et les recollisions de plus grande énergie provoqués par les effets de propagation. / Thirty years after the demonstration of the production of high laser harmonics through nonlinear laser-gas interaction, high harmonic generation (HHG) is being used to probe molecular dynamics in real time and is realizing its technological potential as a tabletop source of attosecond pulses in the XUV to soft X-ray range. Despite experimental progress, theoretical efforts have been stymied by the excessive computational cost of first-principles simulations and the difficulty of systematically deriving reduced models for the non-perturbative, multiscale interaction of an intense laser pulse with a macroscopic gas of atoms. In this thesis, we investigate first-principles reduced models for HHG using classical mechanics. Using nonlinear dynamics, we elucidate the indispensable role played by the ionic potential during recollisions in the strong-field limit. Then, borrowing a technique from plasma physics, we systematically derive a hierarchy of reduced Hamiltonian models for the self-consistent interaction between the laser and the atoms during pulse propagation. The reduced models can accommodate either classical or quantum electron dynamics. We build a classical model which agrees quantitatively with the quantum model for the propagation of the dominant components of the laser field. In a simplified geometry, we show that the anomalously high frequency radiation seen in simulations results from the delicate interplay between electron trapping and higher energy recollisions brought on by propagation effects.
|
5 |
Continuité en topologie symplectique.Humiliere, Vincent 09 July 2008 (has links) (PDF)
Dans cette thèse, nous étudions divers problèmes issus de la topologie symplectique où la topologie C° intervient. Nous étudions diverses complétions de l'espace des applications hamiltoniennes, puis appliquons cette étude aux équations d'Hamilton-Jacobi. Nous abordons ensuite le problème de l'extension du morphisme de Calabi à des groupes d'homéomorphismes. Enfin, nous nous intéressons à la rigidité C° du crochet de Poisson et à l'extension au cadre C° de la notion de représentation hamiltonienne.
|
6 |
Algorithmes d'implantation et tracé des connexions par fils isolésFloricica, Ion 28 June 1974 (has links) (PDF)
.
|
7 |
Sous-variétés lagrangiennes monotonesGadbled, Agnès 14 June 2008 (has links) (PDF)
La condition de monotonie pour les sous-variétés lagrangiennes a été introduite par Oh en 1993. C'est une version relative d'une condition définie par Floer pour les variétés symplectiques. Ces conditions permettent d'obtenir la bonne définition d'homologies de type Floer, en particulier de l'homologie de Floer lagrangienne, outil très utile pour l'étude de plongements lagrangiens.<br /> <br />Dans cette thèse, nous exploitons les hypothèses de monotonie en théorie de Floer sous deux aspects. Un premier aspect est l'étude d'une nouvelle famille d'exemples de variétés symplectiques monotones et de leurs sous-variétés lagrangiennes monotones. Cette famille d'exemples est construite par découpe symplectique à partir du cotangent de variétés munies d'une action libre du cercle. Un second aspect est la construction d'une homologie de type Floer-Novikov pour des sous-variétés lagrangiennes d'un cotangent qui sont dites monotones sur les lacets. On en déduit de nouveaux résultats d'obstruction de plongements lagrangiens monotones sur les lacets dans le cotangent de variétés qui fibrent sur le cercle.
|
8 |
Contribution à l'exploration des propriétés dispersives et de polarisation de structures à cristaux photoniques graduelsDo, Khanh Van 24 October 2012 (has links) (PDF)
Cette thèse apporte une contribution théorique et expérimentale à l'exploration des propriétés de dispersion et de polarisation de structures à cristaux photoniques à gradient (GPhCs). Nous explorons pour commencer la relation qui existe entre les déformations des surfaces équi-fréquences (EFS) de différents cristaux photoniques et les paramètres de maille des configurations envisagées. Compte tenu de la complexité des structures possibles obtenues à partir d'un chirp spatial bidimensionnel d'au moins un paramètre de maille, nous avons limité notre étude à un type particulier de structure basé sur un réseau carré de silicium sur isolant (SOI) planaire constitué de trous d'air de facteur de remplissage variable. Une expression analytique des EFS connexes en fonction du rayon des motifs a d'abord été extraite, et une structure GPhC de "référence" a ensuite été proposé pour l'exploration des propriétés de dispersion et de polarisation des GPhCs utilisant à la fois une approche consistant à propager un ou plusieurs rayons optiques dont les trajectoires sont données par les équations de l'optique Hamiltonienne et une approche tout numérique basée sur des simulations FDTD. Nous décrivons ensuite les processus de fabrication de salle blanche des structures à cristaux photoniques graduels, obtenues à partir de substrats semiconducteurs par lithographie par faisceau d'électrons et gravure ionique réactive. Les échantillons fabriqués sont étudiés expérimentalement par des techniques de mesure en champ lointain et en champ proche (SNOM) en s'appuyant sur une collaboration avec un autre groupe du CNRS. Les résultats expérimentaux montrent une relation dispersive quasi-linéaire de 0.25μm/nm dans la gamme de longueur d'onde allant de 1470nm à 1600nm. Les premiers dispositifs fabriqués présentent aussi la possibilité de séparer des couples de deux longueurs d'onde (démultiplexage) avec des pertes d'insertion faibles (inférieures à 2 dB) et un niveau de diaphonie faible (de l'ordre de -20 dB). Ils présentent également un effet très net de séparation des polarisations de la lumière avec une diaphonie inter-polarisations TE/TM de -27dB dans une bande spectrale de l'ordre de 70 nm. Au-delà de ces mesures optiques obtenus dans une configuration particulière de cristal photonique graduel, les travaux présentés dans cette thèse ont permis l'observation directe de la transition entre les régimes d'homogénéisation et de diffraction de propagation de la lumière dans un matériau optique artificiel tout diélectrique. Globalement, la méthodologie présentée et adoptée pour l'étude de la propagation de la lumière dans les structures étudiées a ouvert des perspectives pour la réalisation de fonctions optiques plus complexes.
|
9 |
Ondes périodiques dans des systèmes d’ÉDP hamiltoniens : stabilité, modulations et chocs dispersifs / Periodic waves in some Hamiltonian PDEs : stability, modulations and dispersive shocksMietka, Colin 28 February 2017 (has links)
La première partie de cette thèse concerne l'étude du problème de Cauchy pour l'équation de KdV quasi-linéaire.On établit un théorème d'existence locale obtenu grâce à des propriétés structurelles et des techniques de jauge qui permettent de compenser les pertes de dérivées apparentes dans les estimations a priori.Dans la seconde partie, les propriétés de stabilité orbitale co-périodique et modulationnelle sont explorées numériquement en exploitant des critères algébriques tous établis à partir d'une même intégrale d'action et de ses dérivées secondes. Notre méthode utilise des quadratures numériques suivies de différences finies afin de calculer la matrice hessienne de l'intégrale d'action. Le comportement asymptotique de cette matrice nous pousse à prêter beaucoup d'attention à l'étude des ondes de grande période ou de faible amplitude. Les résultats numériquesprésentés fournissent de nombreuses informations en lien avec des questions ouvertes.On effectue également des simulations directes sur le système d' ÉDP original pour étudier à la fois le comportement des ondes périodiques sous différents types de perturbations, et les solutions de problèmes de Cauchy avec donnée initiale discontinue. Pour ces derniers, on s'attend à observer des chocs dispersifs, dont la compréhension est basée sur le problème de Gurevich-Pitaevskii, où les équations modulées à la Whitham sont utilisées pour approcher la zone oscillante des chocs. On compare des simulations directes aux solutions idéales du problème de Gurevich-Pitaevskii, en commençant par la célèbre équation de KdV / The first part of this manuscript presents a well-posedness result for a quasilinear version of the KdV equation.The proof takes advantage of structural properties and gauge techniques to deal with apparent loss of derivativesin a priori estimates.In the second part, we investigate the modulational and orbital coperiodic stability of periodic waves by computingalgebraic criteria involving the same abbreviated action integral and its second order derivatives. Our methoduses numerical integrations followed by finite differences to compute the Hessian matrix of the action integral.We pay attention to the asymptotic behavior of this matrix in the large period and small amplitude limits. Thenumerical results about stability give some new insight on several analytical open questions.Finally, direct numerical computations are done on the original system of PDEs to study the behavior of periodictraveling waves under various kinds of perturbations and the solutions of Cauchy problem with discontinuousinitial data. For the latter, we expect dispersive shock waves to arise. The building block for understandingdispersive shocks is known as the Gurevich-Pitaevskii problem, in which modulated equations 'a la Whitham'are used as an approximate model for the oscillatory zone. We compare direct numerical simulations to idealizedsolutions of Gurevich-Pitaevskii problems, starting with the famous KdV equation
|
10 |
Invariants de Gromov-Witten et fibrations hamiltoniennesHyvrier, Clément January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
Page generated in 0.0537 seconds