• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 14
  • 2
  • Tagged with
  • 36
  • 20
  • 12
  • 10
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Gestion de l'énergie dans un système multi-sources photovoltaïque et éolien avec stockage hybride batteries/supercondensateurs

Croci, Lila 18 December 2013 (has links) (PDF)
Ce mémoire présente le travail de recherche effectué pour la conception d'une stratégie de commande originale, destinée aux systèmes de puissance hybrides en sites isolés. Le système considéré, voué à l'alimentation électrique d'une habitation, comprend deux sources, un groupe de panneaux photovoltaïques et une petite éolienne, et deux types de stockage, un banc de batteries lithium-ion et un de supercondensateurs. Face au problème de gestion de l'énergie dans un système hybride, et aux enjeux de maximisation de sa puissance produite, nous proposons de développer une stratégie de commande basée sur les flux d'énergie. pour cela, nous présentons dans un premier temps les modélisations d'Euler-Lagrange et hamiltonienne du système. Ces modèles permettent d'utiliser la propriété de passivité de celui-ci, et ainsi de synthétiser des commandes par injection d'amortissement pour chaque source, afin de maximiser sa production, et pour les supercondensateurs, dans le but d'assurer une répartition cohérente des flux d'énergie entre eux et les batteries. Les commandes sont finalement mises en œuvre dans un simulateur, puis dans un banc d'essai expérimental, afin d'une part de comparer leurs performances à celles de solutions préexistantes, et d'autre part de valider le bon fonctionnement du système hybride complet les utilisant.
32

Gestion de l'énergie dans un système multi-sources photovoltaïque et éolien avec stockage hybride batteries/supercondensateurs / Energy management in a photovoltaic/wind hybrid power system with batteries/supercapacitors storage

Croci, Lila 18 December 2013 (has links)
Ce mémoire présente le travail de recherche effectué pour la conception d'une stratégie de commande originale, destinée aux systèmes de puissance hybrides en sites isolés. Le système considéré, voué à l'alimentation électrique d'une habitation, comprend deux sources, un groupe de panneaux photovoltaïques et une petite éolienne, et deux types de stockage, un banc de batteries lithium-ion et un de supercondensateurs. Face au problème de gestion de l'énergie dans un système hybride, et aux enjeux de maximisation de sa puissance produite, nous proposons de développer une stratégie de commande basée sur les flux d'énergie. pour cela, nous présentons dans un premier temps les modélisations d'Euler-Lagrange et hamiltonienne du système. Ces modèles permettent d'utiliser la propriété de passivité de celui-ci, et ainsi de synthétiser des commandes par injection d'amortissement pour chaque source, afin de maximiser sa production, et pour les supercondensateurs, dans le but d'assurer une répartition cohérente des flux d'énergie entre eux et les batteries. Les commandes sont finalement mises en œuvre dans un simulateur, puis dans un banc d'essai expérimental, afin d'une part de comparer leurs performances à celles de solutions préexistantes, et d'autre part de valider le bon fonctionnement du système hybride complet les utilisant. / This thesis presents the research about design of a new control strategy for stand-alone hybrid power systems. The considered system is composed of two sources, a group of photovoltaic panels and a low-power wind generator, and of two kinds of storage, a bank of lithium-ion batteries and one of supercapacitors. Faced with the problem of energy management in a hybrid power system, and with necessity of maximizing the produced power, we intend to develop an energy-based control strategy.For this purpose, we present the system's Euler-Lagrange modeling and Hamiltonian modeling. These models allow the use of the passivity property, and then the design of Passivity-Based Controllers for each source, in order to maximize its production, and for the supercapacitors, to ensure a fitted power sharing between batteries and them. The controllers are finally implemented in a simulator, and then in a experimental test bench, in order to compare their performances to pre-existent solutions, and tovalidate the control law for the global hybrid system.
33

Structure chirale de la gravité quantique à boucles / The Chiral Structure of Loop Quantum Gravity

Wieland, Wolfgang 12 December 2013 (has links)
La relativité générale représente la description la plus précise de l'interaction gravitationnelle. Cependant, alors que la matière est régie par les lois de la mécanique quantique, la gravitation, elle, est une théorie fondamentalement classique. A l'échelle de Planck, c'est-à-dire à des distances d'environ 10E-35 mètres, les effets quantiques et ceux de la gravitation deviennent tous deux importants. A l'heure actuelle, un langage mathématique unifié et décrivant les effets physiques à cette échelle est toujours manquant. Il existe néanmoins plusieurs théories candidates à cette description, et l'une d'entre elles, la gravité quantique à boucles, est l'objet d'étude de cette thèse.Afin de tester si une théorie candidate peur fournir une description appropriée des propriétés quantiques du champ de gravitation, elle doit présenter une certaine cohérence interne du point de vue mathématique, et aussi être en accord avec les tests expérimentaux de la relativité générale. Le but de cette thèse est de développer certains outils mathématiques qui éclairent ces conditions de consistance interne, et qui permettent d'établir un lien entre différentes formulations de la théorie. / General relativity is the most precise theory of the gravitational interaction. It is a classical field theory. All matter, on the other hand, follows the rules of quantum theory. At the Planck scale, at about distances of the order of 10E-35 meters, both theories become equally important. Today, theoretical physics lacks a unifying language to explore what happens at this scale, but there are several candidate theories available. Loop quantum gravity is one them, and it is the main topic of this thesis. To see whether a particular proposal is a viable candidate for a quantum theory of the gravitational field it must be free of internal inconsistencies, and agree with all experimental tests of general relativity. This thesis develops mathematical tools to check these.
34

Hamiltonian Floer theory on surfaces

Connery-Grigg, Dustin 12 1900 (has links)
Dans cette thèse, nous développons de nouveaux outils pour relier les dynamiques qualitatives des systèmes hamiltoniens sur des surfaces aux propriétés algèbriques de leurs complexes de Floer - un objet algébrique qui encode l'information sur la façon dont les orbites 1-périodiques d'un système sont reliées par des cylindres satisfaisant une équation différentielle partielle elliptique appelée l'équation de Floer. L'idée principale est de considérer --- pour un hamiltonian \(H \in C^\infty(S^1 \times \Sigma)\) sur une surface symplectique \((\Sigma, \omega)\) --- les graphes des orbites contractiles 1-périodiques de l'isotopie \((\phi^H_t)_{t \in [0,1]}\) comme définissant une tresse \(P^H\) dans \(S^1 \times \Sigma\). En choisissant des capuchons pour chacune de ces orbites 1-périodiques, nous obtenons un objet que nous appelons une tresse encapuchonnée \(\hat{P}^H\), qui est muni d'une fonction d'indexation \(\mu_{CZ}: \hat{P}^H \rightarrow \mathbb{Z}\) obtenue en assignant à chaque brin encapuchonné l'indice de Conley-Zehnder de l'orbite encapuchonnée associée. L'idée est alors de s'interroger sur la relation entre l'information topologique encodée dans la tresse encapuchonnée indexée \((\hat{P}^H,\mu_{CZ})\) et la structure du complexe de Floer \(CF_*(H,J)\) pour une structure presque complexe générique \(J\). À cette fin, nous aurons recours à: un nouvel invariant relatif pour les paires de tresses encapuchonnées que nous appelons le nombre d'enlacement homologique, un cercle d'idées concernant le comportement asymptotique des courbes pseudo-holomorphes développé par Hofer-Wysocki-Zehnder dans leur série d'articles [8], [10], [12] et aussi [11] (ainsi qu'un raffinement supplémentaire dans le cas relatif dû à Siefring dans [32]), et une nouvelle technique en basses dimensions pour la construction de morphismes de continuation de Floer qui ont un comportement prescrit. En conséquence de ces techniques, nous établissons l'existence --- pour des systèmes hamiltoniens génériques sur une surface fermée arbitraire --- de certaines feuilletages singulières spéciaux sur \(S^1 \times \Sigma\) dont le comportement est étroitement lié à la fois à la dynamique sous-jacente et à la structure du complexe de Floer du système. La construction de tels feuilletages dans le cas particulier des pseudo-rotations d'un disque, par des méthodes très différentes des nôtres, a été au coeur des progrès significatifs récents de Bramham dans [3] sur une célèbre question de Katok concernant les systèmes conservatifs de basse dimension et d'entropie nulle. Ces feuilletages fournissent également, pour les systèmes hamiltoniens lisses génériques, une construction Floer-théorique des feuilletages positivement transversaux sur \(\Sigma\) qui ont été construits originellement (pour les homéomorphismes de surface généraux) par Le Calvez à travers d'une extension substantielle de la théorie de Brouwer classique pour les homéomorphismes de surface dans [16]. En plus de fournir un pont géométrique entre la dynamique d'une isotopie hamiltonienne et l'information algébrique contenue dans son complexe de Floer, les techniques développées dans cette thèse permettent également de donner une caractérisation --- purement en termes de la dynamique de l'isotopie hamiltonienne sous-jacente --- des cycles de Floer dans \(CF_*(H,J)\) qui représentent la classe fondamentale de la surface et qui de plus se trouvent dans l'image d'un morphisme de PSS au niveau des chaines. Finalement, ces techniques permettent de définir une nouvelle famille d'invariants d'un système hamiltonien (sur une variété symplectique arbitraire) qui se comporte formellement de manière similaire à une famille bien étudiée de tels invariants connue comme les invariants spectraux de Oh-Schwarz. L'avantage de nos nouveaux invariants est que nous sommes capable de calculer explicitement les plus importants d'entre eux pour des systèmes hamiltoniens génériques sur des surfaces arbitraires, ce uniquement en termes de topologie relative des orbites périodiques du système (avec leurs indices de Conley-Zehnder). Ceci généralise un résultat de Humilière-Le Roux-Seyfaddini dans [13] dans lequel ils ont donné une caractérisation dynamique du principal invariant spectral de Oh-Schwarz dans le cas de systèmes hamiltoniens autonomes sur des surfaces de genre positif. / In this thesis, we develop novel tools for relating the qualitative dynamics of Hamiltonian systems on surfaces to the algebraic properties of their Floer complexes --- an algebraic object which encodes information about the ways in which a system’s 1-periodic orbits are connected by cylinders satisfying an elliptic partial differential equation known as Floer’s equation. The main idea is to consider --- for a generic Hamiltonian \(H \in C^\infty(S^1 \times \Sigma)\) on a symplectic surface \((\Sigma, \omega)\) --- the graphs of the contractible time-1 periodic orbits of the isotopy \((\phi^H_t)_{t \in [0,1]}\) as defining a braid \(P^H\) in \(S^1 \times \Sigma\). Upon choosing cappings for each such 1-periodic orbit, we obtain an object which we term a capped braid \(\hat{P}^H\), which comes equipped with an indexing function \(\mu_{CZ}: \hat{P}^H \rightarrow \mathbb{Z}\) given by assigning to each (capped) strand of the braid the Conley-Zehnder index of the associated capped orbit. The idea is then to enquire into the relation of the topological information encoded in the indexed capped braid \((\hat{P}^H,\mu_{CZ})\) and the structure of the Floer complex \(CF_*(H,J)\) for a generic \(J\). The main tools employed to this end are: a novel relative invariant for pairs of capped braids which we term the homological linking number, a circle of ideas about the asymptotic behaviour of pseudo-holomorphic curves pioneered by Hofer-Wysocki-Zehnder in their series of papers [8], [10], [12] as well as in [11] (along with a further refinement to the relative case by Siefring in [32]), and a novel technique for the construction of regular Floer continuation maps in low-dimensions having prescribed behaviour. As a consequence of these techniques, we establish the existence --- for generic Hamiltonian systems on an arbitrary closed surface \(\Sigma\) --- of certain special singular foliations on \(S^1 \times \Sigma\) whose behaviour is tightly related to both the underlying dynamics, as well as the structure of the system’s Floer complex. The construction of such foliations (by very different methods) in the particular case of pseudo-rotations on a disk was the crux of Bramham’s recent significant progress in [3] on a famous question due to Katok about low-dimensional conservative systems with vanishing entropy. These foliations also provide, for generic smooth Hamiltonian systems, 7 a Floer-theoretic construction of the positively transverse foliations on \(\Sigma\) which were originally constructed (for general surface homeomorphisms) by Le Calvez through a significant extension of classical Brouwer theory for surface homeomorphisms in [16]. In addition to providing a geometric bridge between the dynamics of a Hamiltonian isotopy and the algebraic information contained in its associated Floer complex, the techniques developed in this dissertation also permit a characterization --- purely in terms of the dynamics of the underlying Hamiltonian isotopy --- of those Floer cycles in \(CF_*(H,J)\) which represent the fundamental class of the surface, and which moreover lie in the image of some chain-level PSS map. Finally, these techniques permit the definition of a new family of invariants of a Hamiltonian system (on an arbitrary symplectic manifold) which behave formally similarly to a well-studied family of such invariants known as ‘Oh-Schwarz spectral invariants’ (and which agree with them in all known cases). The advantage of these novel spectral invariants is that we are able to explicitly compute the most important of these spectral invariants for generic Hamiltonian systems on arbitrary surfaces purely in terms of the relative topology of the system’s periodic orbits (together with their Conley-Zehnder indices). This considerably generalizes a result by Humilière-Le Roux-Seyfaddini in [13] in which they gave a dynamical characterization of the main Oh-Schwarz spectral invariant in the case of time-independent Hamiltonian systems on surfaces with positive genus.
35

Sur la dynamique hamiltonienne et les actions symplectiques de groupes

Sarkis Atallah, Marcelo 07 1900 (has links)
Cette thèse contient quatre articles qui étudient les phénomènes de rigidité des transforma- tions hamiltoniennes des variétés symplectiques. Le premier article, rédigé en collaboration avec Egor Shelukhin, examine les obstructions à l’existence de symétries hamiltoniennes d’ordre fini sur une variété symplectique fermée (M,ω); c’est-à-dire de torsion hamiltonienne. En d’autres termes, nous étudions les sous- groupes finis du groupe des difféomorphismes hamiltoniens Ham(M,ω). Nous identifions trois sources principales d’obstructions: Contraintes topologiques. Inspirés par un résultat de Polterovich montrant que les variétés symplectiques asphériques n’admettent pas de torsion hamiltonienne, nous établissons que la présence d’un sous-groupe fini non trivial de Ham(M, ω) implique l’existence d’une sphère A ∈ π2(M) avec ⟨[ω],A⟩ > 0 et ⟨c1(M),A⟩ > 0. En particulier, les variétés symplectiques négativement monotones et les variétés symplectiques Calabi-Yau n’admettent pas de torsion hamiltonienne. Présence de courbes J-holomorphes. De manière générale, il y a de nombreux exemples de torsion hamiltonienne, par exemple toute rotation de la sphère de dimension deux par une fraction irrationnelle de π. Lorsque (M,ω) est positivement monotone, nous montrons que l’existence de torsion hamiltonienne impose une condition géométrique qui implique que les sphères J-holomorphes non constantes sont présentes partout. Ce phénomène était prédit dans une liste de problèmes contenue dans la monographie d’introduction de McDuff et de Salamon. Rigidité métrique spectrale. Notre analyse révèle que, pour les variétés symplectiques posi- tivement monotones, il existe un voisinage de l’identité dans Ham(M,ω) dans la topologie induite par la métrique spectrale qui ne contient aucun sous-groupe fini non trivial. Le principal résultat du deuxième article établit que, pour une large classe de variétés sym- plectiques, le flux d’un lacet de difféomorphismes symplectiques est entièrement déterminé par la classe d’homotopie de ses orbites. Comme application, nous obtenons de nouveaux exemples où l’existence d’un point fixe d’une action symplectique du cercle implique qu’elle est hamiltonienne et de nouvelles conditions assurant que le groupe de flux est trivial. De plus, nous obtenons des obstructions à l’existence d’éléments non triviaux de Symp0(M,ω) ayant un ordre fini. Le troisième article, rédigé en collaboration avec Han Lou, démontre une version de la conjecture de Hofer-Zehnder pour les variétés symplectiques fermées semi-positives dont l’homologie quantique est semi-simple; ce résultat généralise le travail révolutionnaire de Shelukhin sur les variétés symplectiques monotones. Le résultat montre qu’un difféomor- phisme hamiltonien possédant plus de points fixes contractiles, comptés homologiquement, que le nombre total de Betti de la variété doit avoir une infinité de points périodiques. La composante clé de la preuve est une nouvelle étude de l’effet de la réduction modulo p, un nombre premier, sur les bornes de l’homologie de Floer filtrée qui proviennent de la semi- simplicité. Cette étude repose sur la théorie des extensions algébriques des corps équipés d’une norme non-archimédienne. Le quatrième article, écrit en collaboration avec Habib Alizadeh et Dylan Cant, examine la déplaçabilité d’une sous-variété lagrangienne fermée L d’une variété symplectique convexe á l’infini par un difféomorphisme hamiltonien à support compact. Nous concluons qu’un difféomorphisme hamiltonien φ dont la norme spectrale est plus petite qu’un ħ(L) > 0 ne dépendant que de L ⊆ W ne peut pas déplacer L. De plus, nous établissons une estimation du nombre de valeurs d’action en terme de la longueur du cup-produit pour le nombre de valeurs d’action; lorsque L est rationnelle, cela implique une estimation du nombre de points d’intersection L ∩ φ(L) en terme de la longueur du cup-produit. Ainsi, nous montrons que le nombre de points fixes d’un difféomorphisme hamiltonien d’une variété symplectique fermée rationnelle (M, ω) dont la norme spectrale est plus petite que la constante de rationalité est au moins de 1 plus la longueur du cup-produit de M. / This thesis comprises four articles that study rigidity phenomena of Hamiltonian transfor- mations of symplectic manifolds. The first article, co-authored with Egor Shelukhin, examines obstructions to the existence of Hamiltonian symmetries of finite order on a closed symplectic manifold (M,ω); Hamil- tonian torsion. In other words, we study the finite subgroups of the group of Hamiltonian diffeomorphisms Ham(M, ω). We identify three primary sources of obstructions: Topological constraints. Inspired by a result of Polterovich showing that symplectically aspherical symplectic manifolds do not admit Hamiltonian torsion, we establish that the presence of a non-trivial finite subgroup of Ham(M,ω) implies that there exists a sphere A ∈ π2(M) with ⟨[ω],A⟩ > 0 and ⟨c1(M),A⟩ > 0. In particular, symplectically Calabi-Yau, and spherically negative-monotone symplectic manifolds do not admit Hamiltonian torsion. The presence of J-holomorphic curves. For general closed symplectic manifolds, there are plenty of examples of Hamiltonian torsion, for instance, any rotation of the two-sphere by an irrational fraction of π. When (M, ω) is spherically positive-monotone, we show the existence of Hamiltonian torsion imposes geometrical uniruledness, which implies that non-constant J-holomorphic spheres are ubiquitous. This phenomenon was predicted in a list of problems contained in the introductory monograph of McDuff and Salamon. The spectral metric rigidity. Our study reveals that for spherically positive-monotone (M, ω), there exists a neighbourhood of the identity in Ham(M,ω), in the topology induced by the spectral metric, that does not contain any non-trivial finite subgroup. The main result of the second article establishes that for a broad class of symplectic manifolds the flux of a loop of symplectic diffeomorphisms is completely determined by the homotopy class of its orbits. As an application, we obtain a new vanishing result for the flux group and new instances where the existence of a fixed point of a symplectic circle action implies that it is Hamiltonian. Moreover, we obtain obstructions to the existence of non-trivial elements of Symp0(M,ω) that have finite order. The third article, co-authored with Han Lou, proves a version of the Hofer-Zehnder conjec- ture for closed semipositive symplectic manifolds whose quantum homology is semisimple; this result generalizes the groundbreaking work of Shelukhin in the spherically positive- monotone setting. The result shows that a Hamiltonian diffeomorphism possessing more contractible fixed points, counted homologically, than the total Betti number of the mani- fold, must have infinitely many periodic points. The key component of the proof is a new study of the effect of reduction modulo a prime on the bounds on filtered Floer homology that arise from semisimplicity. It relies on the theory of algebraic extensions of non-Archimedean normed fields. The fourth article, co-authored with Habib Alizadeh and Dylan Cant, investigates the dis- placeability of a closed Lagrangian submanifold L of a convex-at-infinity symplectic manifold by a compactly supported Hamiltonian diffeomorphism. We conclude that a Hamiltonian diffeomorphism φ whose spectral norm is smaller than some ħ(L) > 0, depending only on L ⊂ W , cannot displace L. Furthermore, we establish a cup-length estimate for the number of action values; when L is rational, this implies a cup-length estimate on the number of intersection points L ∩ φ(L). As a corollary, we demonstrate that the number of fixed points of a Hamiltonian diffeomorphism of a closed rational symplectic manifold (M,ω), whose spectral norm is smaller than the rationality constant, is bounded below by one plus the cup-length of M.
36

Sur des méthodes préservant les structures d'une classe de matrices structurées / On structure-preserving methods of a class of structured matrices

Ben Kahla, Haithem 14 December 2017 (has links)
Les méthodes d'algèbres linéaire classiques, pour le calcul de valeurs et vecteurs propres d'une matrice, ou des approximations de rangs inférieurs (low-rank approximations) d'une solution, etc..., ne tiennent pas compte des structures de matrices. Ces dernières sont généralement détruites durant le procédé du calcul. Des méthodes alternatives préservant ces structures font l'objet d'un intérêt important par la communauté. Cette thèse constitue une contribution dans ce domaine. La décomposition SR peut être calculé via l'algorithme de Gram-Schmidt symplectique. Comme dans le cas classique, une perte d'orthogonalité peut se produire. Pour y remédier, nous avons proposé deux algorithmes RSGSi et RMSGSi qui consistent à ré-orthogonaliser deux fois les vecteurs à calculer. La perte de la J-orthogonalité s'est améliorée de manière très significative. L'étude directe de la propagation des erreurs d'arrondis dans les algorithmes de Gram-Schmidt symplectique est très difficile à effectuer. Nous avons réussi à contourner cette difficulté et donner des majorations pour la perte de la J-orthogonalité et de l'erreur de factorisation. Une autre façon de calculer la décomposition SR est basée sur les transformations de Householder symplectique. Un choix optimal a abouti à l'algorithme SROSH. Cependant, ce dernier peut être sujet à une instabilité numérique. Nous avons proposé une version modifiée nouvelle SRMSH, qui a l'avantage d'être aussi stable que possible. Une étude approfondie a été faite, présentant les différentes versions : SRMSH et SRMSH2. Dans le but de construire un algorithme SR, d'une complexité d'ordre O(n³) où 2n est la taille de la matrice, une réduction (appropriée) de la matrice à une forme condensée (J(Hessenberg forme) via des similarités adéquates, est cruciale. Cette réduction peut être effectuée via l'algorithme JHESS. Nous avons montré qu'il est possible de réduire une matrice sous la forme J-Hessenberg, en se basant exclusivement sur les transformations de Householder symplectiques. Le nouvel algorithme, appelé JHSJ, est basé sur une adaptation de l'algorithme SRSH. Nous avons réussi à proposer deux nouvelles variantes, aussi stables que possible : JHMSH et JHMSH2. Nous avons constaté que ces algorithmes se comportent d'une manière similaire à l'algorithme JHESS. Une caractéristique importante de tous ces algorithmes est qu'ils peuvent rencontrer un breakdown fatal ou un "near breakdown" rendant impossible la suite des calculs, ou débouchant sur une instabilité numérique, privant le résultat final de toute signification. Ce phénomène n'a pas d'équivalent dans le cas Euclidien. Nous avons réussi à élaborer une stratégie très efficace pour "guérir" le breakdown fatal et traîter le near breakdown. Les nouveaux algorithmes intégrant cette stratégie sont désignés par MJHESS, MJHSH, JHM²SH et JHM²SH2. Ces stratégies ont été ensuite intégrées dans la version implicite de l'algorithme SR lui permettant de surmonter les difficultés rencontrées lors du fatal breakdown ou du near breakdown. Rappelons que, sans ces stratégies, l'algorithme SR s'arrête. Finalement, et dans un autre cadre de matrices structurées, nous avons présenté un algorithme robuste via FFT et la matrice de Hankel, basé sur le calcul approché de plus grand diviseur commun (PGCD) de deux polynômes, pour résoudre le problème de la déconvolution d'images. Plus précisément, nous avons conçu un algorithme pour le calcul du PGCD de deux polynômes bivariés. La nouvelle approche est basée sur un algorithme rapide, de complexité quadratique O(n²), pour le calcul du PGCD des polynômes unidimensionnels. La complexité de notre algorithme est O(n²log(n)) où la taille des images floues est n x n. Les résultats expérimentaux avec des images synthétiquement floues illustrent l'efficacité de notre approche. / The classical linear algebra methods, for calculating eigenvalues and eigenvectors of a matrix, or lower-rank approximations of a solution, etc....do not consider the structures of matrices. Such structures are usually destroyed in the numerical process. Alternative structure-preserving methods are the subject of an important interest mattering to the community. This thesis establishes a contribution in this field. The SR decomposition is usually implemented via the symplectic Gram-Schmidt algorithm. As in the classical case, a loss of orthogonality can occur. To remedy this, we have proposed two algorithms RSGSi and RMSGSi, where the reorthogonalization of a current set of vectors against the previously computed set is performed twice. The loss of J-orthogonality has significantly improved. A direct rounding error analysis of symplectic Gram-Schmidt algorithm is very hard to accomplish. We managed to get around this difficulty and give the error bounds on the loss of the J-orthogonality and on the factorization. Another way to implement the SR decomposition is based on symplectic Householder transformations. An optimal choice of free parameters provided an optimal version of the algorithm SROSH. However, the latter may be subject to numerical instability. We have proposed a new modified version SRMSH, which has the advantage of being numerically more stable. By a detailes study, we are led to two new variants numerically more stables : SRMSH and SRMSH2. In order to build a SR algorithm of complexity O(n³), where 2n is the size of the matrix, a reduction to the condensed matrix form (upper J-Hessenberg form) via adequate similarities is crucial. This reduction may be handled via the algorithm JHESS. We have shown that it is possible to perform a reduction of a general matrix, to an upper J-Hessenberg form, based only on the use of symplectic Householder transformations. The new algorithm, which will be called JHSH algorithm, is based on an adaptation of SRSH algorithm. We are led to two news variants algorithms JHMSH and JHMSH2 which are significantly more stable numerically. We found that these algortihms behave quite similarly to JHESS algorithm. The main drawback of all these algorithms (JHESS, JHMSH, JHMSH2) is that they may encounter fatal breakdowns or may suffer from a severe form of near-breakdowns, causing a brutal stop of the computations, the algorithm breaks down, or leading to a serious numerical instability. This phenomenon has no equivalent in the Euclidean case. We sketch out a very efficient strategy for curing fatal breakdowns and treating near breakdowns. Thus, the new algorithms incorporating this modification will be referred to as MJHESS, MJHSH, JHM²SH and JHM²SH2. These strategies were then incorporated into the implicit version of the SR algorithm to overcome the difficulties encountered by the fatal breakdown or near-breakdown. We recall that without these strategies, the SR algorithms breaks. Finally ans in another framework of structured matrices, we presented a robust algorithm via FFT and a Hankel matrix, based on computing approximate greatest common divisors (GCD) of polynomials, for solving the problem pf blind image deconvolution. Specifically, we designe a specialized algorithm for computing the GCD of bivariate polynomials. The new algorithm is based on the fast GCD algorithm for univariate polynomials , of quadratic complexity O(n²) flops. The complexitiy of our algorithm is O(n²log(n)) where the size of blurred images is n x n. The experimental results with synthetically burred images are included to illustrate the effectiveness of our approach

Page generated in 0.0527 seconds