Spelling suggestions: "subject:"gromovwitten invariant"" "subject:"promovierten invariant""
1 |
L'invariant de Gromov-WittenLiu, Qing Zhe 02 1900 (has links)
Ce mémoire revient sur l'invariant de Gromov-Witten dans le contexte de topologie symplectique. D'abord, on présente un survol des notions nécessaires de la topologie symplectique, qui inclut les espaces vectoriels symplectiques, les variétés symplectiques, les structures presque complexes et la première classe de Chern. Ensuite, on présente une définition de l'invariant de Gromov-Witten, qui utilise les courbes pseudoholomorphes, les espaces de modules ainsi que les applications d'évaluation. Finalement, on donne quelques exemples de calcul d'invariant à la fin de ce mémoire. / The present work reviews the Gromov-Witten invariant in the context of symplectic topology. First, we showcase the basic concepts required for the understanding of the matter, which includes symplectic vector spaces, symplectic manifolds, almost complex structures and the first Chern class. Then, we provide a definition of the Gromov-Witten invariant, after studying pseudoholomorphic curves, moduli spaces and evaluation maps. In the end, we present some examples of Gromov-Witten invariant calculations.
|
2 |
Donaldson hypersurfaces and Gromov-Witten invariantsKrestiachine, Alexandre 03 November 2015 (has links)
Die Frage nach dem Verstäandnis der Topologie symplektischer Mannigfaltigkeiten erhielt immer größere Aufmerksamkeit, insbesondere seit den Arbeiten von A. Weinstein und V. Arnold. Ein bewährtes Mittel ist dabei die Theorie der Gromov-Witten-Invarianten. Eine Gromov-Witten-Invariante zählt Schnitte von rationalen Zyklen mit Modulräumen J-holomorpher Kurven, die eine fixierte Homologieklasse repräsentieren, für eine zahme fast komplexe Struktur. Allerdings ist es im Allgemeinen schwierig, solche Schnittzahlen zu definieren, ohne zusätzliche Annahmen an die symplektische Mannigfaltigkeit zu treffen, da mehrfach überlagerte J-holomorphe Kurven mit negativer Chernzahl vorkommen können. Die vorliegende Dissertation folgt einem alternativen Ansatz zur Definition von Gromov-Witten-Invarianten, der von K. Cieliebak und K. Mohnke eingeführt wurde. Dieser Ansatz liefert für jede fixierte Homologieklasse einen Pseudozykel für jede geschlossene glatte Mannigfaltigkeit mit einer rationalen symplektischen Form. Wir erweitern diesen Ansatz in der vorliegenden Arbeit für eine beliebige symplektische Form. Wie bereits in der ursprünglichen Arbeit betrachten wir nur den Fall holomorpher Sphären. Wir zeigen, dass für jede Klasse der zweiten Koholomogie eine offene Umgebung existiert, so dass für zwei beliebige rationale symplektische Formen, desser Klassen in der gewählten Umgebung liegen, die dazugehörigen Pseudozykel rational kobordant sind. Der Beweis basiert auf einer Modifikation der Argumente des Ansatzes von Cieliebak und Mohnke für den Fall von zwei sich transversal schneidenden Hyperflächen, die jeweils zu verschiedenen symplektischen Formen gehören. / The question of understanding the topology of symplectic manifolds has received great attention since the work of A. Weinstein and V. Arnold. One of the established tools is the theory of Gromov-Witten invariants. A Gromov-Witten invariant counts intersections of rational cycles with the moduli space of J-holomorphic curves representing a fixed class for a tame almost complex structure. However, without imposing additional assumptions on the symplectic manifold such counts are difficult to define in general due to the occurence of multiply covered J-holomorphic curves with negative Chern numbers. This thesis deals with an alternative approach to Gromov-Witten invariants introduced by K. Cieliebak and K. Mohnke. Their approach delivers a pseudocycle for any closed symplectic manfold equipped with a rational symplectic form. Here this approach is extended to the case of an arbitrary symplectic form on a closed symplectic manifold.As in the original work we consider only the case of holomorphic spheres. We show that for any second cohomology class there exists an open neighbourhood, such that for any two rational symplectic forms, whose cohomolgy classes are contained in this neighbourhood, the corresponding pseudocycles are rationally cobordant. The proof is based on an adaptation of the arguments from the original Cieliebak-Mohnke approach to a more general situation - presence of two transversely intersecting hypersurfaces coming from two different symplectic forms.
|
3 |
Topological string theory and applications / Théorie de corde topologique et les applicationsDuan, Zhihao 08 July 2019 (has links)
Cette thèse porte sur diverses applications de la théorie des cordes topologiques basée sur différents types de variétés de Calabi-Yau (CY). Le premier type considéré est la variété torique CY, qui est intimement liée aux problèmes spectraux des différents opérateurs. L'exemple particulier considéré dans la thèse ressemble beaucoup au modèle de Harper-Hofstadter en physique de la matière condensée. Nous étudions d’abord les secteurs non perturbatifs dans ce modèle et proposons une nouvelle façon de les calculer en utilisant la théorie topologique des cordes. Dans la deuxième partie de la thèse, nous considérons les fonctions de partition sur des variétés de CY elliptiquement fibrées. Celles-ci présentent un comportement modulaire intéressant. Nous montrons que pour les géométries qui ne conduisent pas à des symétries de jauge non abéliennes, les fonctions de partition des cordes topologiques peuvent être reconstruites avec seulement les invariants de Gromov-Witten du genre zéro. Finalement, nous discutons des travaux en cours concernant la relation entre les fonctions de partitionnement des cordes topologiques sur les soi-disant arbres de Higgsing dans la théorie de F. / This thesis focuses on various applications of topological string theory based on different types of Calabi-Yau (CY) manifolds. The first type considered is the toric CY manifold, which is intimately related to spectral problems of difference operators. The particular example considered in the thesis closely resembles the Harper-Hofstadter model in condensed matter physics. We first study the non-perturbative sectors in this model, and then propose a new way to compute them using topological string theory. In the second part of the thesis, we consider partition functions on elliptically fibered CY manifolds. These exhibit interesting modular behavior. We show that for geometries which don't lead to non-abelian gauge symmetries, the topological string partition functions can be reconstructed based solely on genus zero Gromov-Witten invariants. Finally, we discuss ongoing work regarding the relation of the topological string partition functions on the so-called Higgsing trees in F-theory.
|
Page generated in 0.0602 seconds