• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Improvements of U-pipe Borehole Heat Exchangers

Acuña, José January 2010 (has links)
The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market. This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground. / <p>QC 20100517</p> / EFFSYS2 / Efficient Use of Energy Wells for Heat Pumps
12

Potential Use of Abandoned Underground Coal Mine AS-029 as a Reservoir for Ground Source Heat Pumps, Athens, OH

Madera-Martorell, Andreana 23 September 2020 (has links)
No description available.
13

Temperaturzoner för lagring av värmeenergi i cirkulärt borrhålsfält / Temperature stratification of borehole thermal energy storages

Penttilä, Jens January 2013 (has links)
The thermal response of a borehole field is often described by non‐dimensional response factors called gfunctions.The g‐function was firstly generated as a numerical solution based on SBM (Superposition BoreholeModel). An analytical approach, the FLS (Finite Line Source), is also accepted for generating the g‐function. In thiswork the potential to numerically produce g‐functions is studied for circular borehole fields using the commercialsoftware COMSOL. The numerical method is flexible and allows the generation of g‐functions for any boreholefield geometry. The approach is partially validated by comparing the solution for a square borehole field containing36 boreholes (6x6) with g‐functions generated with the FLS approach and with the program EED (Earth EnergyDesigner). The latter is based on Eskilsons SBM, one of the first documents where the concept of g‐functions wasintroduced. Once the approach is validated, the square COMSOL model is compared with a circular geometryborehole field developed by the same method, consisting of 3 concentric rings having 6, 12, and 18 boreholes.Finally the influence on the circular geometry g‐function is studied when connecting the boreholes in radial zoneswith different thermal loads. / Den termiska responsen för ett borrhålsfält beskrivs ofta med den dimensionslösa responsfunktionen kallad gfunktion.Responsfunktionen togs först fram som en numerisk lösning med SBM (Superposition Borehole Model).En analytisk metod, FLS (Finite Line Source) är också accepterad för framtagandet av g‐funktioner. I det här arbetetundersöks förutsättningarna att numeriskt ta fram g‐funktioner för cirkulära borrhålsfält genom att använda detkommersiella simuleringsprogrammet COMSOL Multiphysics. Den numeriska metoden är flexibel och kananvändas för alla typer av borrhålsgeometrier. Metoden att använda COMSOL valideras delvis genom att jämföraresultatet för ett kvadratiskt borrhålsfält innehållande 36 borrhål (6x6) med lösningar framtagna med FLS och meddimensioneringsprogrammet EED (Earth Energy Designer). Det senare har sin grund i Eskilsons SBM, ett av deförsta arbeten där begreppet g‐funktion introducerades. När metoden att använda COMSOL verifierats, jämförsden kvadratiska borrhålsmodellen med en cirkulär borrhålskonfiguration, upprättad med samma metod,innehållande 3 koncentriska ringar om vardera 6, 12, 18 borrhål. Slutligen undersöks hur den termiska responsenpåverkas då borrhålen i ett cirkulärt borrhålsfält kopplas samman och grupperas i radiella zoner med olika termiskalaster. / SEEC Scandinavian Energy Efficiency Co.

Page generated in 0.0782 seconds