Spelling suggestions: "subject:"group core"" "subject:"croup core""
1 |
THE SEARCHING METHOD OF QUASI-OPTIMUM GROUP SYNC CODES ON THE SUBSET OF PN SEQUENCESJie, Cao, Qiu-cheng, Xie 11 1900 (has links)
International Telemetering Conference Proceedings / October 29-November 02, 1990 / Riviera Hotel and Convention Center, Las Vegas, Nevada / As the code length is increasing, the search of optimum group sync codes will be more and more difficult, even impossible. This paper gives the searching method of quasi-optimum group sync codes on the small subset of PN sequences -- CVT-TAIL SEARCHING METHOD and PREFIX-SUFFIX SEARCHING METHOD. We have searched out quasi-optimum group sync codes for their lengths N=32-63 by this method and compared them with corresponding optimum group sync codes for their lengths N=32-54. They are very approximative. The total searching time is only several seconds. This method may solves the problems among error sync probability, code length and searching time. So, it is a good and practicable searching method for long code.
|
2 |
Convolutional Codes with Additional Structure and Block Codes over Galois RingsSzabo, Steve January 2009 (has links)
No description available.
|
3 |
Ideais em anéis de matrizes finitos e aplicações à Teoria de Códigos / Ideals in finite matrix rings and applications to Coding TheoryTaufer, Edite 19 January 2018 (has links)
Neste trabalho damos uma descrição completa dos ideais à esquerda em anéis de matrizes sobre corpos finitos. Aplicamos estes resultados ao estudo de álgebras de grupo de uma família particular de grupos indecomponíveis e mostramos como construir códigos corretores de erros como ideais destas álgebras. Em particular, exibimos exemplos de códigos tais que, para um dado comprimento e uma dada dimensão, têm o melhor peso possível. / In this work we give a complete description of the left ideals in the full ring of matrices over a finite field. We apply these results to the study of group algebras of a given family of indecomposable groups and show how to construct error correcting codes as ideals of these algebras. In particular, we exhibit examples of codes such that, for a given length and a given dimension, have the best possible weight.
|
Page generated in 0.0313 seconds