Spelling suggestions: "subject:"guppy"" "subject:"puppy""
11 |
No indications of socially induced changes in brain aromatase activity in guppy (Poecilia reticulata) malesRohyo, Izla January 2008 (has links)
Aromatase is the enzyme that catalysis the conversion of androgens into estrogens. It´s a member of P450 cytochrome family and is encoded by the CYP19-gene. The enzyme aromatase has an important role in regulating physiological and behavioral sexual mechanisms. This includes for instance activation, motivation and maintenance of the reproductive behaviors. The sexual behavior is affected by a complex series of events that requires the connection of endogenous hormonal and neurochemical changes with social interactions, especially between the opposite sexes. The aim of the present study was to examine how social interactions effect the aromatase expression and activity in the guppy brain. Guppy males were introduced into four different social conditions: Isolated, all male conditions, heterospecific (with zebrafish females) and conspecific female guppies. The focal males were kept under these conditions for two respectively four days. The sexual behavior, of each of the focal males was recorded daily during 10 minutes. The males with the guppy females showed, in contrast to the males in the other groups, a high frequency of reproductive behaviors. The brains of the focal males were collected and the brain aromatase activity was measured using tritiated water assay. I have also tried to analyze the gene-expression of aromatase with RT-PCR. However I was unable to analyze the results with the RT-PCR, because of possible primer-dimerization. Due to the limited time schedule, we were not able to solve the problem. ANOVA performed on the aromatase activity, revealed no significant difference between the different treatment groups. The variance was highest in the zebrafish category and lowest in the isolated males. There was no significant correlation between the mean number of reproductive behaviors and the aromatase activity in males that were together with guppy females. The results do not support the hypothesis that social interactions can affect the brain aromatase activity in guppy males.
|
12 |
Collective cognition and decision-making in humans and fishClément, Romain Jean Gilbert 23 September 2016 (has links)
Das Zusammenleben in Gruppen ist im Tierreich ein weit verbreitetes Phänomen. Einer der Vorteile des Gruppenlebens könnte die sogenannte „Schwarmintelligenz“ sein, das heißt die Fähigkeit von Gruppen kognitive Probleme zu lösen, die die Problemlösekompetenz einzelner Individuen übersteigt. In der vorliegenden Dissertation untersuchte ich, ob die Gruppengröße beim Menschen und bei Fischen mit einer verbesserten Entscheidungsfindung einhergeht. Beim Menschen analysierte ich zunächst das Abschneiden von Einzelpersonen, die später als Teil einer Gruppe getestet wurden, in einfachen Einschätzungsaufgaben sowie komplizierteren Satz-Rekonstruktionstests. Meine Frage war, ob es Individuen in Gruppen gelingt bessere Entscheidungen zutreffen als das einem durchschnittlichen Individuum der Gruppe alleine möglich wäre und ob Gruppen sogar die Leistung ihres besten Mitglieds in den individuellen Tests überbieten könnten. Tatsächlich konnte ich zeigen, dass Gruppen die Leistung des besten Mitglieds übertreffen, wenn die Problemstellung für Einzelpersonen zu komplex ist oder sich häufig wiederholt. Weiterhin gelang mir zu zeigen, dass Gruppen von Menschen bei einer simulierten Prädationssituation, ähnlich wie es bereits für andere Tierarten beschrieben wurde, anhand von so genannten „Quorum“-Regeln durch non-verbale Kommunikation entscheiden, ob sie bleiben oder flüchten. Dabei dienen einfache Bewegungsmuster als Schlüsselreiz. Individuen einer Gruppe erhöhen durch diesen Mechanismus gleichzeitig ihre echt positiven und verringern ihre falsch positiven Entscheidungen. Beim Guppy, einem Süßwasserfisch aus Trinidad, untersuchte ich in deren natürlichem Habitat, ob die Fähigkeit einzelner Individuen zwischen einer genießbaren und einer ungenießbaren Futterquelle zu unterscheiden, mit der Gruppengröße ansteigt. Meine Ergebnisse zeigen, dass Guppys mit größerer Wahrscheinlichkeit eine genießbare Futterquelle identifizierten, sobald sie Teil einer größeren Gruppe waren. / Group living is a widespread phenomenon. One of its assumed advantages is collective cognition, the ability of groups to solve cognitive problems that are beyond single individuals’ abilities. In this thesis, I investigated whether decision-making improves with group size in both humans and fish, thus using the strengths of each system. In humans, I tested individual performance in simple quantity estimation tasks and a more difficult sentence reconstruction task first alone and then as part of a group. My question was whether groups were able to improve not only on average individual decisions, but also to beat their best members. Indeed, when a given problem is recurrent or too complex for individuals, groups were able to outperform their best members in different contexts. Furthermore, I showed that in a simulated predation experiment, groups of humans decided to stay or to escape using quorum thresholds based on movement behaviour without verbal communication, as has been shown in other animals. This simple movement mechanism allowed individuals in groups to simultaneously increase true positives and decrease false positives. In the guppy, a freshwater fish from Trinidad, I tested in their natural environment whether individuals’ ability to distinguish between an edible and a non-edible food item increases with group size. My results indicate that guppies had better chances to identify the edible food item when part of bigger groups. By investigating several populations with different ecological backgrounds, in particular differing in predation levels, I found that, despite a lower sampling activity in high predation habitats, predation did not affect the improvement of decisions in groups.
|
13 |
Influence of turbidity on social structure in guppies, Poecilia reticulataBorner, Karoline 17 October 2016 (has links)
Umweltveränderungen kommen natürlicherweise vor und viele Spezies waren im Laufe ihrer Evolutionsgeschichte davon betroffen. Durch die Aktivitäten des Menschen jedoch finden diese in höherer Geschwindigkeit und größerem Umfang statt und stellen so für viele Spezies eine neue Herausforderung dar. Einen großen Einfluss auf die Umwelt nimmt der Mensch durch Verschmutzung, welche zu Veränderungen der Physiologie der Organismen und deren Verhalten führen und damit Einfluss auf die Populationsdynamik und letztendlich auf die Biodiversität haben kann. In meiner Dissertation untersuchte ich den Einfluss durch Bergbau ausgelöster Trübung auf das Verhalten und die soziale Struktur des Guppys. Er nutzt soziale Interaktionen für eine höhere Effizienz bei der Nahrungssuche und Räubervermeidung. Die Nutzung sei-nes dafür eingesetzten Sehsinns ist bei Trübung stark eingeschränkt. Ich untersuchte die Reaktion Trübung unerfahrener Fische aus Labor und Feld auf Trübung. Es zeigte sich, dass beide ihre sozialen Interaktionen in trübem Wasser verringerten. Eine zusätzliche Markow-Ketten-Analyse ergab aber auch, dass Laborfische Kontakte zu bestimmten In-dividuen der Gruppe verstärkten und Feldfische ihre initiierten Kontakte behielten. An-schließend studierte ich den Unterschied der sozialen Struktur Trübung erfahrener und - unerfahrener Fische. Trübung erfahrene Fische erhöhten die Gesamtzahl der Interaktio-nen, reduzierten jedoch die Anzahl der initiierten Kontakte im Gegensatz zu unerfahre-nen Fischen. Diese Strukturänderung, vermute ich, erhöht den Zusammenhalt und damit den In-formationsfluss im Schwarm. Die Ergebnisse von Folgeversuchen, nämlich der Erhalt der Paarungsanzahl und die effektivere Vermeidung einer Räuberattrappe bei Trübung er-fahrenen Fischen, unterstützen diese Vermutung. Die Arbeit zeigt, dass Guppys in der Lage sind, sich durch Änderung Ihrer sozialen Struktur an trübe Verhältnisse anzupas-sen. Dies könnte auch Einfluss auf ihre Populationsstruktur haben. / Most species have been subjected to environmental changes during their evolutionary history. However, due to human activity, environmental changes are currently occurring at higher speeds and on a greater scale, presenting new challenges for many species. Pollution, as a major type of human-induced environmental change, may not only affect physiology but also behaviour, thereby affecting population dynamics and consequently biodiversity. The topic of my dissertation is the effect of turbidity from quarrying on the behaviour and social association pattern of the guppy (Poecilia reticulata). Turbidity impairs the fish’s ability to use visual cues during social interactions, which in turn helps increases efficiency of foraging and avoiding predators. I investigated the initial re-sponse of guppies to turbidity and subsequently tested whether turbidity-experienced vs turbidity-inexperienced populations differ in their social association patterns and how they cope with ecological challenges. Both lab-reared and wild-caught guppies that were inexperienced with turbidity reduced social associations in turbid water in con-trast to turbidity-experienced fish. A Markov chain analysis revealed that lab-reared guppies increased associations with particular neighbours. Similarly, wild-caught gup-pies maintained the number of initiated associations under turbid conditions. The in-crease in non-initiated associations suggests a stronger connectivity within the shoal, leading to higher information transmission in a poor visual environment. Additional results showed that this altered social structure enabled turbidity-experienced fish to maintain the frequency of mating attempts in turbidity and to avoid predation risk. This suggests that guppies have the ability to adjust to turbidity, but with major changes in their social structure, which might have an impact on population dynamics.
|
14 |
The interplay between sexual selection, inbreeding and inbreeding avoidance in the guppy, Poecilia reticulataZajitschek, Susanne, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW January 2008 (has links)
Inbreeding can have profound negative effects on individuals by reducing fertility and viability. In populations, inbreeding depression can reduce growth rates and increases extinction risk. The aims of this thesis are to investigate inbreeding depression in male guppies (Poecilia reticulata) and to study the evolution of mechanisms for inbreeding avoidance in females, using guppies from a feral population in Queensland, Australia. Male guppies are highly polymorphic in their sexual ornamentation, indeed they show one of the most extreme polymorphisms observed in nature. Female guppies exhibit complex mate choice based on preferences for ornamentation, as well as social context. I aim is to examine how these factors of inbreeding avoidance alter sexual selection. In male guppies I found strong inbreeding depression in male sperm numbers, which is amplified under semi-natural compared to laboratory conditions (Chapter 2). Moreover, inbreeding depression results in low fertility under sperm competition: an experiment using artificial insemination techniques reveals that highly inbred males are heavily disadvantaged in gaining paternity (Chapter 3). On population level, inbreeding depression is manifest in reduced growth rates, predominantly in the early stages of inbreeding (Chapter 4). Population growth at inbreeding coefficients f=0.375-0.59 did not seem to lead to inbreeding depression, whereas lower levels of inbreeding reduced population growth. Although the growth rates in inbred populations appear normal, severe inbreeding depression is uncovered after outbred immigrants are added. Specifically, male immigrants are most efficient in short-term genetic rescue, probably due to insemination of large numbers of females whereas females are limited in the number of eggs they can produce (Chapter 4). Male ornamental traits show significant inbreeding depression in semi-natural conditions only (Chapters 2 & 3). Inbreeding avoidance mechanisms seem to have evolved in females: they prefer courtship displays of non-inbred males (Chapter 2), unfamiliar males (Chapter 5) and males with rare patterns (Chapter 6). This preference might increase the mating success of immigrants, and may have evolved to facilitate the avoidance of inbreeding. Together with context-independent preferences for ornament combinations (Chapter 6), it also offers an explanation for the maintenance of polymorphism in this species.
|
15 |
The interplay between sexual selection, inbreeding and inbreeding avoidance in the guppy, Poecilia reticulataZajitschek, Susanne, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW January 2008 (has links)
Inbreeding can have profound negative effects on individuals by reducing fertility and viability. In populations, inbreeding depression can reduce growth rates and increases extinction risk. The aims of this thesis are to investigate inbreeding depression in male guppies (Poecilia reticulata) and to study the evolution of mechanisms for inbreeding avoidance in females, using guppies from a feral population in Queensland, Australia. Male guppies are highly polymorphic in their sexual ornamentation, indeed they show one of the most extreme polymorphisms observed in nature. Female guppies exhibit complex mate choice based on preferences for ornamentation, as well as social context. I aim is to examine how these factors of inbreeding avoidance alter sexual selection. In male guppies I found strong inbreeding depression in male sperm numbers, which is amplified under semi-natural compared to laboratory conditions (Chapter 2). Moreover, inbreeding depression results in low fertility under sperm competition: an experiment using artificial insemination techniques reveals that highly inbred males are heavily disadvantaged in gaining paternity (Chapter 3). On population level, inbreeding depression is manifest in reduced growth rates, predominantly in the early stages of inbreeding (Chapter 4). Population growth at inbreeding coefficients f=0.375-0.59 did not seem to lead to inbreeding depression, whereas lower levels of inbreeding reduced population growth. Although the growth rates in inbred populations appear normal, severe inbreeding depression is uncovered after outbred immigrants are added. Specifically, male immigrants are most efficient in short-term genetic rescue, probably due to insemination of large numbers of females whereas females are limited in the number of eggs they can produce (Chapter 4). Male ornamental traits show significant inbreeding depression in semi-natural conditions only (Chapters 2 & 3). Inbreeding avoidance mechanisms seem to have evolved in females: they prefer courtship displays of non-inbred males (Chapter 2), unfamiliar males (Chapter 5) and males with rare patterns (Chapter 6). This preference might increase the mating success of immigrants, and may have evolved to facilitate the avoidance of inbreeding. Together with context-independent preferences for ornament combinations (Chapter 6), it also offers an explanation for the maintenance of polymorphism in this species.
|
16 |
The interplay between sexual selection, inbreeding and inbreeding avoidance in the guppy, Poecilia reticulataZajitschek, Susanne, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW January 2008 (has links)
Inbreeding can have profound negative effects on individuals by reducing fertility and viability. In populations, inbreeding depression can reduce growth rates and increases extinction risk. The aims of this thesis are to investigate inbreeding depression in male guppies (Poecilia reticulata) and to study the evolution of mechanisms for inbreeding avoidance in females, using guppies from a feral population in Queensland, Australia. Male guppies are highly polymorphic in their sexual ornamentation, indeed they show one of the most extreme polymorphisms observed in nature. Female guppies exhibit complex mate choice based on preferences for ornamentation, as well as social context. I aim is to examine how these factors of inbreeding avoidance alter sexual selection. In male guppies I found strong inbreeding depression in male sperm numbers, which is amplified under semi-natural compared to laboratory conditions (Chapter 2). Moreover, inbreeding depression results in low fertility under sperm competition: an experiment using artificial insemination techniques reveals that highly inbred males are heavily disadvantaged in gaining paternity (Chapter 3). On population level, inbreeding depression is manifest in reduced growth rates, predominantly in the early stages of inbreeding (Chapter 4). Population growth at inbreeding coefficients f=0.375-0.59 did not seem to lead to inbreeding depression, whereas lower levels of inbreeding reduced population growth. Although the growth rates in inbred populations appear normal, severe inbreeding depression is uncovered after outbred immigrants are added. Specifically, male immigrants are most efficient in short-term genetic rescue, probably due to insemination of large numbers of females whereas females are limited in the number of eggs they can produce (Chapter 4). Male ornamental traits show significant inbreeding depression in semi-natural conditions only (Chapters 2 & 3). Inbreeding avoidance mechanisms seem to have evolved in females: they prefer courtship displays of non-inbred males (Chapter 2), unfamiliar males (Chapter 5) and males with rare patterns (Chapter 6). This preference might increase the mating success of immigrants, and may have evolved to facilitate the avoidance of inbreeding. Together with context-independent preferences for ornament combinations (Chapter 6), it also offers an explanation for the maintenance of polymorphism in this species.
|
17 |
The interplay between sexual selection, inbreeding and inbreeding avoidance in the guppy, Poecilia reticulataZajitschek, Susanne, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW January 2008 (has links)
Inbreeding can have profound negative effects on individuals by reducing fertility and viability. In populations, inbreeding depression can reduce growth rates and increases extinction risk. The aims of this thesis are to investigate inbreeding depression in male guppies (Poecilia reticulata) and to study the evolution of mechanisms for inbreeding avoidance in females, using guppies from a feral population in Queensland, Australia. Male guppies are highly polymorphic in their sexual ornamentation, indeed they show one of the most extreme polymorphisms observed in nature. Female guppies exhibit complex mate choice based on preferences for ornamentation, as well as social context. I aim is to examine how these factors of inbreeding avoidance alter sexual selection. In male guppies I found strong inbreeding depression in male sperm numbers, which is amplified under semi-natural compared to laboratory conditions (Chapter 2). Moreover, inbreeding depression results in low fertility under sperm competition: an experiment using artificial insemination techniques reveals that highly inbred males are heavily disadvantaged in gaining paternity (Chapter 3). On population level, inbreeding depression is manifest in reduced growth rates, predominantly in the early stages of inbreeding (Chapter 4). Population growth at inbreeding coefficients f=0.375-0.59 did not seem to lead to inbreeding depression, whereas lower levels of inbreeding reduced population growth. Although the growth rates in inbred populations appear normal, severe inbreeding depression is uncovered after outbred immigrants are added. Specifically, male immigrants are most efficient in short-term genetic rescue, probably due to insemination of large numbers of females whereas females are limited in the number of eggs they can produce (Chapter 4). Male ornamental traits show significant inbreeding depression in semi-natural conditions only (Chapters 2 & 3). Inbreeding avoidance mechanisms seem to have evolved in females: they prefer courtship displays of non-inbred males (Chapter 2), unfamiliar males (Chapter 5) and males with rare patterns (Chapter 6). This preference might increase the mating success of immigrants, and may have evolved to facilitate the avoidance of inbreeding. Together with context-independent preferences for ornament combinations (Chapter 6), it also offers an explanation for the maintenance of polymorphism in this species.
|
18 |
The interplay between sexual selection, inbreeding and inbreeding avoidance in the guppy, Poecilia reticulataZajitschek, Susanne, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW January 2008 (has links)
Inbreeding can have profound negative effects on individuals by reducing fertility and viability. In populations, inbreeding depression can reduce growth rates and increases extinction risk. The aims of this thesis are to investigate inbreeding depression in male guppies (Poecilia reticulata) and to study the evolution of mechanisms for inbreeding avoidance in females, using guppies from a feral population in Queensland, Australia. Male guppies are highly polymorphic in their sexual ornamentation, indeed they show one of the most extreme polymorphisms observed in nature. Female guppies exhibit complex mate choice based on preferences for ornamentation, as well as social context. I aim is to examine how these factors of inbreeding avoidance alter sexual selection. In male guppies I found strong inbreeding depression in male sperm numbers, which is amplified under semi-natural compared to laboratory conditions (Chapter 2). Moreover, inbreeding depression results in low fertility under sperm competition: an experiment using artificial insemination techniques reveals that highly inbred males are heavily disadvantaged in gaining paternity (Chapter 3). On population level, inbreeding depression is manifest in reduced growth rates, predominantly in the early stages of inbreeding (Chapter 4). Population growth at inbreeding coefficients f=0.375-0.59 did not seem to lead to inbreeding depression, whereas lower levels of inbreeding reduced population growth. Although the growth rates in inbred populations appear normal, severe inbreeding depression is uncovered after outbred immigrants are added. Specifically, male immigrants are most efficient in short-term genetic rescue, probably due to insemination of large numbers of females whereas females are limited in the number of eggs they can produce (Chapter 4). Male ornamental traits show significant inbreeding depression in semi-natural conditions only (Chapters 2 & 3). Inbreeding avoidance mechanisms seem to have evolved in females: they prefer courtship displays of non-inbred males (Chapter 2), unfamiliar males (Chapter 5) and males with rare patterns (Chapter 6). This preference might increase the mating success of immigrants, and may have evolved to facilitate the avoidance of inbreeding. Together with context-independent preferences for ornament combinations (Chapter 6), it also offers an explanation for the maintenance of polymorphism in this species.
|
19 |
Enemy within the gates : reasons for the invasive success of a guppy population (Poecilia reticulata) in TrinidadSievers, Caya January 2010 (has links)
The invasion of individuals into new habitats can pose a major threat to native species and to biodiversity itself. However, the consequences of invasions for native populations that are not fully reproductively isolated from their invaders are not yet well explored. Here I chose the Trinidadian guppy, Poecilia reticulata, to investigate how different population traits shaped the outcome of Haskins's introduction, a well-documented invasion of Guanapo river guppies into the Turure river. I especially concentrated on the importance of behaviour for invasive success. I investigated if the spread of Guanapo guppies is due to superiority in behaviour, life-history and/or genetics, or if the outcome of this translocation is due to chance. Despite the fact that by today the invasive front has passed the Turure's confluence with the River Quare many kilometres downstream of the introduction site, and the original genotype only survives in small percentages, as was revealed by genetic analysis in this and other studies, no obvious differences between invasive and native populations could be detected in any of the tested behavioural, life-history and genetic traits. When tested for mate choice, neither Guanapo nor Oropuche (Turure) males seemed to be able to distinguish between the population origin of females, but courted and mated at random. At the same time, females did not prefer to school with individuals of the same population over schooling with more distantly related females. The formation of mixed schools after an invasive event is therefore likely. Because female guppies showed a very low willingness to mate, even after having been separated from males for up to six months, sperm transfer through forced copulations will become more important. Taken together, these behaviours could increase the speed of population mixing after an invasion without the need for behavioural superiority of the invasive population. When tested for their schooling abilities, offspring of mixed parentage, in contrast to pure breds, displayed a large amount of variety in the time they spent schooling, a circumstance that can potentially influence survival rates and therefore the direction of gene pool mixing. Guanapo fish did not show reproductive superiority in a mesocosm experiment, where both populations were mixed in different proportions. On the contrary, in two out of three mixed treatments, the amount of Oropuche (Turure) alleles was significantly higher than expected from the proportion of initially stocked fish. The almost complete absence of distinguishable traits other than genetic variation between the examined populations that belong to different drainage systems, opposes the recent split of the guppy into two different species following drainage system borders, as is argued in this thesis. However, the successful invasion of the Turure by Guanapo guppies and the nearly entire disappearance of the original population can be explained in absence of differing population traits. Here I demonstrate how behavioural and genetic interactions between subspecies influence the outcome of biological invasions and second, how factors other than population traits, such as the geographic situation, can produce an advantageous situation for the invader even in the absence of population differences.
|
20 |
The effects of climate change and introduced species on tropical island streamsFrauendorf, Therese 01 August 2020 (has links)
Climate change and introduced species are among the top five threats to freshwater
systems face. Tropical regions are considered to be especially sensitive to the effects of
climate change, while island systems are more susceptible to species introductions.
Climate-driven changes in rainfall are predicted to decrease streamflow and increase flash
flooding in many tropical streams. In addition, guppies (Poecilia reticulata), an invasive
fish, have been introduced to many tropical freshwater ecosystems, either intentionally
for mosquito population control, or accidentally because of the aquarium trade. This
dissertation examines the effects of climate-driven change in rainfall and introduced
guppies on stream structure (resource and invertebrate biomass and composition) and
function (nutrient recycling) in Trinidad and Hawaii. In the first data chapter we used a
time series to examine how nutrient recycling of guppies changes in the first 6 years after introduction to a new habitat and to examine drivers of these changes. We found that
when guppy populations establish in a new environment, they show considerable
variation in nutrient recycling through time. This resulted from changes in guppy density
in the first two years of introductions, and changes in individual excretion in subsequent
stages. In the following chapter we utilized a rainfall gradient that mimics forecasted,
climate-driven changes in precipitation and resulting changes in streamflow to examine
the effects of climate change on stream food resources and macroinvertebrates. We found
that the drying of streams across the gradient was associated with a decrease in resource
quality and a 35-fold decline in macroinvertebrate biomass. Invertebrate composition also
switched to taxa with faster turnover rates. In the third data chapter we used this same
space-for-time substitution approach to determine if climate-driven changes in stream structure also affected stream function. We showed that population nutrient recycling
rates declined at the drier end of our rainfall gradient as a result of drops in population
densities. We also found that under the current climate scenario, community excretion
supplied up to 70% of the nutrient demand, which was ten-fold lower with projected
climate changes in streamflow. Lastly, since freshwater ecosystems often face multiple
human impacts, including climate change and invasive species, we wanted to understand
how climate-driven changes in flow might alter the impact of introduced guppies on
stream ecosystems. We selected several streams with guppies and several without
guppies along the Hawaii rainfall gradient to examine if the effect of guppies changed
with differences in streamflow. We found that the two stressors had synergistic effects on
macroinvertebrate biomass and nutrient recycling rates. We concluded that climate
change appeared to enhance effects of guppies, through direct and indirect effects. Overall, this dissertation shows that both climate change and species invasion can affect
stream ecosystems at multiple levels of organization. This dissertation demonstrates that
the effects of anthropogenic stressors are not static through time, and emphasizes the
need and utility of using several methodological approaches when measuring the
temporal effects of stressors. We also underline the significance of assessing multiple
stressor interactions, as more than one stressor often impacts ecosystems. / Graduate / 2019-09-01
|
Page generated in 0.0189 seconds