• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 5
  • Tagged with
  • 21
  • 19
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funktionelle Analyse der Histon-Demethylase UTX in hämatopoetisch differenzierenden murinen ES-Zellen / Functional analysis of the histone demethylase UTX during hematopoietic murine ESC differentiation

Kampka, Justyna January 2014 (has links) (PDF)
Murine embryonale Stammzellen (ES-Zellen) stellen mit ihrem Selbsterneuerungs- und Differenzierungspotenzial einen einzigartigen Zelltyp für die Grundlagenforschung und angewandte Wissenschaften dar. Auf Grund ihrer Fähigkeit, in vitro die embryonale Entwicklung eines Organismus nachzuahmen, sind sie für die Untersuchung der Zell-Differenzierung, wie z.B. der embryonalen Hämatopoese geeignet. Während der ES-Zell-Selbsterneuerung und -Differenzierung spielen epigenetischen Modifikationen, unter anderem Histon-Methylierungen, eine wichtige Rolle. Transkriptionell aktivierende (H3K4me2/3, di- bzw. trimethyliertes Lysin 4 an Histon 3) und reprimierende (H3K27me2/3; di- bzw. trimethyliertes Lysin 27 an Histon 3) Histon-Methylierungs-Muster und die epigenetische Gen-Regulierung werden unter anderem durch die entgegenwirkenden PcG- und MLL-Protein-Komplexe koordiniert. Die H3K27me2/3-spezifische Demethylase UTX/KDM6A ist eine Komponente des MLL-Komplexes und somit an aktivierenden Gen-Regulationsmechanismen beteiligt. Im Rahmen dieser Arbeit war es mein Ziel zu untersuchen, inwieweit UTX für die Aufrechterhaltung der ES-Zell-Pluripotenz und für die ES-Zell-Differenzierung, insbesondere die hämatopoetische Differenzierung, von Bedeutung ist. Meine Daten zeigten, dass UTX in undifferenzierten ES-Zellen, während der ES-Zell-Differenzierung und in adulten Geweben ubiquitär exprimiert ist. Um Aufschluss über die UTX-Funktion zu bekommen, wurde UTX in ES-Zellen mittels RNA-Interferenz und Gene-Targeting gezielt ablatiert. Genexpressions-Analysen zeigten, dass die Expression von Pluripotenzgenen, genauso wie die Zellproliferation und die Verteilung der Zellzyklus-Phasen in ES-Zellen durch den Verlust von UTX unbeeinflusst blieben, während globale H3K4me3- sowie H3K27me3-Level reduziert waren. Während der ES-Zell-Differenzierung konnte ich eine verminderte Induktion der mesodermalen und hämatopoetischen Marker Flk1, Brachyury, Runx1 und Gata1 beobachten. Zudem war die Expression von UTY, dem auf dem Y-Chromosom kodierten UTX-Homolog, in ES-Zellen und während der Differenzierung runterreguliert, was auf eine Regulierung durch UTX schließen lässt. Des Weiteren zeigten UTX-Knockdown und –Knockout-Zellen in funktionellen hämatopoetischen in vitro Assays eine verminderte Fähigkeit, Blast-Kolonien und hämatopoetische Vorläuferzellen zu generieren. Interessanterweise zeigten ChIP-Analysen in differenzierenden wt und UTX-Knockout-EBs unveränderte H3K27me3-Level an Promotoren der hämatopoetischen Gene, was auf eine Demethylase-unabhängige Funktion von UTX während der frühen Hämatopoese hindeutet. Um die Funktion von UTX während der Entwicklung in vivo, insbesondere während der embryonalen Hämatopoese, untersuchen zu können, habe ich eine konditionelle UTX-Knockout-Maus hergestellt, die für eine gezielte UTX-Deletion im hämatopoetischen System verwendet wird. Zusammenfassend zeigen meine Daten, dass UTX für die ES-Zell-Proliferation und –Pluripotenz unbedeutend ist und die Reduzierung der H3K27-Trimethylierung auch bei fehlendem UTX weiterhin herbeigeführt werden kann. Im Gegensatz dazu übernimmt UTX eine entscheidende Rolle während der mesodermalen und hämatopoetischen ES-Zell-Differenzierung, vermutlich über eine Histon-Demethylase-unabhängige Funktion. / Mouse embryonic stem cells (ESCs) through their potential to self-renew and to differentiate provide a unique cell type for basic and applied research. Due to their ability to mimic the embryonic development of an organism in vitro, they are suitable for the study of cellular differentiation such as embryonic hematopoiesis. ESC self-renewal and differentiation are associated with epigenetic modifications, including histone methylation. The opposing PcG and MLL protein complexes coordinate transcriptionally repressing (H3K27me2/3, di- and trimethylated histone 3 at lysine 27) and activating (H3K4me2/3; di- and trimethylated histone 3 at lysine 4) histone methylation patterns respectively, and epigenetic gene regulation. The H3K27me2/3-specific demethylase UTX/KDM6A is a component of the MLL complex and thus involved in transcriptional activation of gene expression. Within the scope of my thesis, I aimed to analyze to what extent UTX contributes to the maintenance of ESC pluripotency and differentiation, in particular to the hematopoietic differentiation. My data showed that UTX is ubiquitously expressed in undifferentiated ESCs, during ESC differentiation and in adult tissue. In order to study the UTX specific function, I specifically down-regulated UTX in ESCs via RNA interference and gene targeting. Gene expression profiling of ESCs showed that the expression of pluripotency genes, as well as cell proliferation and cell cycle phase distribution remained unaffected by the loss of UTX. However, global H3K4me3 and H3K27me3 levels were reduced. I observed a decreased induction of the mesodermal and hematopoietic genes Flk1, Brachyury, Runx1 and Gata1 in differentiating ESCs. Furthermore, the expression of UTY, the homologue of UTX encoded on the Y chromosome, was down- regulated in ESCs and in EBs, suggesting a regulatory function of UTX. In addition, using functional hematopoietic in vitro assays, UTX knockdown and knockout cells showed reduced blast colony formation and decreased differentiation of hematopoietic progenitor cells. Interestingly, ChIP analysis of wt and UTX KO EBs revealed comparable enrichment of H3K27me3 at the promoters of the hematopoietic genes, suggesting a demethylase independent role for UTX during early hematopoiesis. In order to investigate the role of UTX during development in vivo, particularly during embryonic hematopoiesis, I generated a conditional UTX knockout mouse, which will be used for a specific deletion of UTX in the hematopoietic system. In conclusion, my data revealed that UTX is insignificant for ESC proliferation and pluripotency and that the loss of H3K27 trimethylation is induced even in the absence of UTX. Furthermore, the data reported in this work suggest that UTX is required for mesodermal and hematopoietic ESC differentiation, presumably via a histone demethylase independent function.
2

PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem/progenitor cells / Die Inhibition des PRC2 wirkt dem Kultur-bedingten Verlust des Repopulationspotenzials in humanen hämatopoetischen Stammzellen/Vorläuferzellen aus Nabelschnurblut entgegen

Varagnolo, Linda January 2014 (has links) (PDF)
Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for the treatment of a variety of malignant and non-malignant disorders. However, the low amount of cells collected per donor is often insufficient for treatment of adult patients. In order to make sufficient numbers of CB-HSCs available for adults, expansion is required. Different approaches were described for HSC expansion, however these approaches are impeded by the loss of engrafting potential during ex vivo culture. Little is known about the underlying molecular mechanisms. Epigenetic mechanisms play essential roles in controlling stem cell potential and fate decisions and epigenetic strategies are considered for HSC expansion. Therefore, this study aimed to characterize global and local epigenotypes during the expansion of human CB-CD34+, a well established CB progenitor cell type, to better understand the molecular mechanisms leading to the culture-associated loss of engrafting potential. Human CB-CD34+ cells were cultured using 2 different cytokine cocktails: the STF cocktail containing SCF, TPO, FGF-1 and the STFIA cocktail, which combines STF with Angiopoietin-like 5 (Angptl5) and Insulin-like growth factor-binding protein 2 (IGFBP2). The latter expands CB-HSCs ex vivo. Subsequently, the NOD-scid gamma (NSG) mouse model was used to study the engraftment potential of expanded cells. Engraftment potential achieved by fresh CB-CD34+ cells was maintained when CB-CD34+ cells were expanded under STFIA but not under STF conditions. To explore global chromatin changes in freshly isolated and expanded CB-CD34+ cells, levels of the activating H3K4me3 and the repressive H3K27me3 histone marks were determined by chromatin flow cytometry and Western blot analyses. For analysis of genome-wide chromatin changes following ex vivo expansion, transcriptome profiling by microarray and chromatin immunoprecipitation combined with deep sequencing (ChIP-seq) were performed. Additionally, local chromatin transitions were monitored by ChIP analyses on promoter regions of developmental and self-renewal factors. On a global level, freshly isolated CD34+ and CD34- cells differed in H3K4me3 and H3K27me3 levels. After 7 days of expansion, CD34+ and CD34- cells adopted similar levels of active and repressive marks. Expanding the cells without IGFBP2 and Angptl5 led to a higher global H3K27me3 level. ChIP-seq analyses revealed a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Chemical inhibition of the H3K27 methyltransferase EZH2 counteracted the culture-associated loss of NSG engraftment potential. Collectively, the data presented in this study revealed that by adding epigeneticly active compounds in the culture media we observed changes on a chromatin level which counteracted the loss of engraftment potential. H3K27me3 rather than H3K4me3 may be critical to establish a specific engraftment supporting transcriptional program. Furthermore, I identified a critical function for the Polycomb repressive complex 2-component EZH2 in the loss of engraftment potential during the in vitro expansion of HPSCs. Taken together this thesis provides a better molecular understanding of chromatin changes upon expansion of CB-HSPCs and opens up new perspectives for epigenetic ex vivo expansion strategies. / Hämatopoetische Stammzellen aus Nabelschnurblut (CB-HSCs) sind eine bedeutende Quelle für die Behandlung einer Vielzahl maligner und nicht-maligner Erkrankungen. Allerdings ist die geringe Anzahl an Stammzellen, die von einem Spender gewonnen werden kann, meist nicht ausreichend für die Rekonstitution des hämatopoetischen Systems erwachsener Patienten. Um eine ausreichende Menge an CB-HSCs zu gewinnen, ist eine Expansion der Zellen erforderlich. Verschiedene Ansätze zur ex vivo Expansion von HSCs wurden beschrieben, allerdings waren diese Ansätze durch den Verlust des Repopulationspotentials während der ex vivo Kultivierung nicht umsetzbar. Über die zugrundeliegenden Mechanismen ist wenig bekannt. Epigenetische Mechanismen spielen eine entscheidende Rolle in der Kontrolle von Selbsterneuerung und Differenzierung von Stammzellen. Aus diesem Grund werden epigenetische Strategien zur HSC-Expansion in Betracht gezogen. Das Ziel dieser Studie war, globale und lokale Epigenotypen während der Expansion humaner CB-CD34+-Zellen (CB-Vorläuferzellen) zu charakterisieren. Diese Studien sollten zu einem besseren Verständnis der molekularen Mechanismen, welche zum Kultivierungs-assoziierten Verlust des Repopulationspotentials führen. Humane CB-CD34+-Zellen wurden in zwei verschiedene Zytokin-Cocktails kultiviert: Der sogenannte STF-Cocktail, welcher SCF, TPO und FGF-1 enthält und der STFIA-Cocktail, welcher STF mit Angptl5 und IGFBP2 kombiniert. Aus der Literatur war zu Beginn dieser Doktorarbeit war bekannt, dass CB-HSCs ex vivo in STFIA, nicht aber in STF expandiert werden können. In Übereinstimmung mit diesem Befund zeigen die hier vorgestellten heterologen Transplantationsexperimente, dass das Repopulationspotential frischer CB-CD34+-Zellen nur erhalten blieb, wenn die Zellen unter STFIA, jedoch nicht, wenn sie unter STF-Bedingungen expandiert waren. Um die globalen Chromatinveränderungen frisch isolierter und expandierter Zellen zu untersuchen, wurden die Level der aktivierenden Histonmodifikation H3K4me3 und der repressiven H3K27me3-Modifikation durch Chromatin-Durchflusszytometrie und Western Blot Analyse bestimmt. Zur Analyse der genomweiten Chromatinveränderungen nach ex vivo Expansion wurden Transkriptomprofile durch Mikroarray und Chromatin-Immunpräzipitation, in Kombination mit Deep-Sequencing (ChiP-Seq) durchgeführt. Zusätzlich wurden lokale Chromatinveränderungen durch ChiP-Analysen an Promotorregionen von Entwicklungs- und Selbsterneuerungs-Faktoren analysiert. Auf globaler Ebene unterschieden sich frisch isolierte CD34+ und CD34- Zellen in ihren H3K4me3 und H3K27me3 Leveln. Nach siebentägiger Expansion nahmen CD34+ und CD34- Zellen ähnliche Level aktiver und repressiver Markierungen an. Die Expansion der Zellen ohne IGFBP2 und Angptl5 führte zu höheren globalen H3K27me3 Leveln. ChiP-seq Analysen zeigten eine Zytokin-Cocktail-abhängige Neuverteilung von H3K27me3 Mustern. Die chemische Inhibition der H3K27me-Transferase EZH2 wirkte dem Kultivierungs-assoziierten Verlust des NSG Repopulationspotentials entgegen. Zusammenfassend zeigen diese Daten, dass durch die Zugabe von spezifischen Zytokinen in das Kulturmedium Veränderungen auf Chromatinebene verbunden sind, die dem kultivierungs-assoziierten Verlust des Repopulationspotentials entgegen wirken. Diese Daten zeigen weiterhin, dass die durch die PRC2 Komponente EZH2 vermittelte H3K27me3, nicht jedoch die H3K4me3 Histonmodifikation ein kritischer Faktor für die Etablierung eines die Repopulation fördernden Transkriptionsprogrammes ist. Somit dient diese Arbeit einem besseren molekularen Verständnis der Chromatinveränderungen während der Expansion von CB-HSPCs und eröffnet eine Perspektive für neue epigenetische ex vivo Expansionsstrategien.
3

Einfluss hochfrequenter Felder des Mobilfunks auf das blutbildende System in vitro / Effects of radiofrequency radiation on the human hematopoietic system in vitro

Gläser, Katharina January 2017 (has links) (PDF)
Elektromagnetische Felder (EMF) sind in der Umwelt des Menschen allgegenwärtig. Unter Verwendung unterschiedlicher Frequenzen bilden sie die Grundlage zahlreicher Technologien und begegnen uns im Alltag in einer Vielzahl von Anwendungen. Eine sehr wichtige Anwendung von EMF ist die mobile Kommunikation. Die hierfür verwendeten Frequenzen liegen im hochfrequenten Bereich und variieren mit dem Mobilfunkstandard. Weit verbreitet ist die GSM- und UMTS-Modulation der zweiten (2G) und dritten Generation (3G). Zum neuesten Mobilfunkstandard zählt LTE (4G). Aus statistischen Daten geht hervor, dass derzeit weltweit mehr als sieben Milliarden Mobilfunk-Endgeräte existieren. Die weitverbreitete und stetig ansteigende Verwendung dieser Technologien verdeutlicht, dass viele Menschen, darunter auch zunehmend Kinder und Jugendliche, regelmäßig einer Exposition gegenüber EMF ausgesetzt sind. Die wichtigste Expositionsquelle stellt dabei das Mobiltelefon dar, da sich in diesem Szenario die Quelle sehr nah am menschlichen Körper befindet. In der Vergangenheit wurden zahlreiche in-vitro- und in-vivo-Untersuchungen sowie epidemiologische Studien durchgeführt, um potentielle, nicht-thermische Effekte von Mobilfunkstrahlung auf biologische Systeme beurteilen zu können. Ein vollständiger Konsens konnte auf der Basis der erhaltenen Ergebnisse jedoch nicht erzielt werden, sodass weiterhin Bedenken zum schädlichen Potential dieser nichtionisierenden Strahlung bestehen. Insbesondere wurden Fragestellungen zu Langzeiteffekten sowie zu Effekten, die speziell bei Kindern eine besondere Rolle spielen, bisher nicht ausreichend adressiert. Kinder können empfindlicher auf Umwelteinflüsse reagieren und sind im Vergleich zu Erwachsenen teilweise höher gegenüber EMF exponiert. Dies gilt vor allem für Kopfregionen, in denen sich das aktive, für die Hämatopoese verantwortliche Knochenmark befindet. Vor diesem Hintergrund war es das Ziel der vorliegenden Arbeit, den Einfluss von Mobilfunkstrahlung auf das humane blutbildende System zu untersuchen. Im Fokus standen dabei humane hämatopoetische Stammzellen, die mit Frequenzen der Mobilfunkstandards GSM (900 MHz), UMTS (1.950 MHz) und LTE (2.535 MHz) jeweils über einen kurzen (4 h) und einen langen (20 h) Zeitraum und mit unterschiedlichen Intensitäten (0 W/kg, 0,5 W/kg, 1 W/kg, 2 W/kg und 4 W/kg) exponiert wurden. Vergleichende Experimente erfolgten mit Zellen der Promyelozyten-Zelllinie HL-60. Mögliche Effekte wurden mit den Endpunkten Apoptose, oxidativer Stress, Zellzyklus, DNA-Schaden und –Reparatur sowie Differenzierung und Epigenetik in Form von Histonacetylierung bewertet. In keinem der genannten Endpunkte konnten klare Effekte durch Mobilfunkstrahlung ausgemacht werden, weder für die hämatopoetischen Stammzellen, noch für die Zelllinie HL-60. Die einzige Veränderung wurde bei der Quantifizierung von DNA-Schäden beobachtet. Hier zeigte sich nach der Kurzzeitexposition der Stammzellen mit der Modulation GSM eine kleine, aber statistisch signifikante Abnahme der DNA-Schäden verglichen mit der Scheinexposition. Diese Beobachtung ließ sich in weiteren Replikaten jedoch nicht reproduzieren und wurde daher als nicht biologisch relevant eingestuft. Insgesamt konnte mit dieser Arbeit gezeigt werden, dass durch Mobilfunkstrahlung mit Frequenzen der verbreiteten Modulationen GSM, UMTS und LTE sowie SAR-Werten, die unterhalb und oberhalb des empfohlenen Sicherheitsstandards liegen und typischerweise bei Handytelefonaten auftreten, keine Effekte in Zellen des blutbildenden Systems unter den gegebenen Versuchsbedingungen induziert wurden. Ein besonderer Fokus lag hierbei auf der Reproduzierbarkeit der Ergebnisse. Weiterhin wurden zum ersten Mal humane hämatopoetische Stammzellen für derartige Untersuchungen eingesetzt. Dies hat insofern eine besondere Bedeutung, als hämatopoetische Stammzellen aufgrund ihrer multipotenten Eigenschaften eine breitere Analyse mit Hinblick auf die Kanzerogenese und auf das Immunsystem ermöglichen. Um über die Mobilfunk-Untersuchungen hinaus die hämatopoetischen Stammzellen besser charakterisieren zu können, sowie die Sensitivität von Blutzellen mit unterschiedlichem Differenzierungsstatus zu analysieren, wurden sie anderen Zellen des blutbildenden Systems (undifferenzierte und differenzierte HL-60-Zellen und TK6-Zellen) gegenübergestellt. Eine Behandlung der verschiedenen Zelltypen mit mutagenen Substanzen zeigte, dass sich die hämatopoetischen Stammzellen in den meisten der untersuchten Endpunkte von den Zelllinien unterschieden. Deutliche Abweichungen zeigten sich beim oxidativen Stress, der DNA-Reparatur und der Histonacetylierung; kein Unterschied konnte dagegen bei den DNA-Schäden beobachtet werden. Eine erste Interpretation der erhaltenen Ergebnisse ist auf der Grundlage der unterschiedlichen Eigenschaften von Zellen mit abweichendem Differenzierungsstatus möglich. Um jedoch eine eindeutige Aussage treffen zu können, müssten noch weitere Untersuchungen durchgeführt werden. / Electromagnetic fields (EMF) are ubiquitous in the human environment. By using different frequencies, they form a basis for numerous technologies and are present in multiple applications of our everyday life. One very important application of EMF is mobile communication, where the frequencies vary depending on the modulation standard. The most common standards are the second (2G) and the third (3G) generation standard GSM and UMTS, respectively. The latest modulation type is the fourth generation standard (4G) LTE. Statistical data reveal that there are currently more than seven billion mobile phone subscriptions. With the widespread use of these technologies, many people, including an increasing number of children, are continuously exposed to EMF. Given its close proximity to the human body, the mobile phone is the main source of EMF exposure. A huge number of in vitro, in vivo and epidemiological studies have been performed in the past to investigate potential, non-thermal effects of mobile phone radiation on biological systems. However, no complete consensus has been reached, leading to ongoing concerns about the harmful potential of this type of non-ionizing radiation. Furthermore, two major concerns regarding long-term effects and children-specific effects were not thoroughly addressed so far. Children might react in a more sensitive way towards environmental influences and partially absorb more radiofrequency radiation than adults. This particularly applies to head regions where the active bone marrow, which is responsible for hematopoiesis, is located. The aim of the present study was to investigate effects of radiofrequency fields emitted by mobile phones on cells of the human hematopoietic system. The focus was on human hematopoietic stem cells which were exposed to modulated GSM (900 MHz), UMTS (1,950 MHz) and LTE (2,535 MHz) radiofrequency fields with SAR values ranging from 0 to 4 W/kg for short (4 h) and long (20 h) time periods. Comparative investigations were performed with cells of the promyelocytic cell line HL-60. Studied endpoints included apoptosis, oxidative stress, cell cycle, DNA damage and DNA repair, differentiation and epigenetics in terms of histone acetylation. In all but one of these end points, no clear effect of mobile phone radiation could be detected, neither in hematopoietic stem cells nor in HL-60 cells. The only alteration was observed when quantifying DNA damage. Compared to the sham exposure, a small but statistically significant decrease in DNA damage was found after exposure of hematopoietic stem cells to the GSM modulation for short time period. This observation could not be reproduced in subsequent replicate experiments, and was thus considered not biologically relevant. Overall, these investigations demonstrate that mobile phone radiation at frequencies used in the major technologies GSM, UMTS and LTE and with SAR values below and above the recommended safety limits did not induce effects in cells of the human hematopoietic system under the prevailing conditions. A particular focus was on the reproducibility of the results. Furthermore, for the first time human hematopoietic stem cells were subject for such investigations. This is of particular importance, since hematopoietic stem cells enable a broader analysis with respect to cancerogenesis and the immune system based on their multipotent characteristics. Moreover, in order to better characterize the hematopoietic stem cells as well as analyze the sensitivity of hematopoietic cells differing in their differentiation status, hematopoietic stem cells were compared to other cells of the hematopoietic system (i.e. undifferentiated and differentiated HL-60 cells and TK6 cells). Upon treatment with mutagenic substances, a clear distinction was observed between the stem cells and the other cell types for the majority of the investigated endpoints. Significant differences were revealed for oxidative stress, DNA repair and histone acetylation, whereas no difference was observed for DNA damage. A first interpretation of the results obtained can be made on the basis of the different characteristics of cells with a different differentiation status. However, in order to make a distinct statement, additional investigations need to be performed.
4

Fanconi Anämie : Entwicklung von hämatopoetischen Mosaiken sowie funktionelle Studien von FANCO (RAD51C) und FANCN (PALB2) / Fanconi Anämie : Development of hematopoetic mosaicism and functional studies of FANCO (RAD51C) and FANCN (PALB2)

Endt, Daniela January 2015 (has links) (PDF)
Zur Wahrung der Genomstabilität entwickelten sich verschiedene Reparaturmechanismen, deren Defekte zu diversen Erkrankungen führen. Der 1927 erstmals beschriebenen Fanconi Anämie (FA) (Fanconi 1927) liegt eine fehlerhafte Reparatur der DNA-Doppelstrang-Quervernetzung zugrunde. Als Ursache wurden Defekte innerhalb des FA/BRCA-Weges lokalisiert, welche zur Chromosomeninstabilität führen. Das Krankheitsbild der autosomal rezessiven oder X-chromosomalen Erkrankung wird meist von kongenitalen Fehlbildungen, progressivem Knochenmarkversagen sowie bereits im jugendlichen Alter erhöhten Tumor-raten und Anämien geprägt. Bisher wurden Defekte in 19 verschiedenen Genen als ursächlich für diese Erkrankung diskutiert. Anhand des betroffenen Gens können nur begrenzt Rückschlüsse auf die Ausprä-gung des Phänotyps geschlossen werden, vielmehr scheinen die Art der Mutation und deren Position im Gen mit der Schwere der Erkrankung zu korrelieren. Im Laufe der Zeit wurden immer mehr Patienten mit mild ausgeprägtem Erkrankungsbild beobachtet. Eine mögliche Erklärung hierfür liefern milde Mutationen, eine weitere das Vorhandensein von Mosaiken blutbildender Zellen. Zu letzterem führt die Reversion einer der beiden Mutationen. Diese Art der „natürlichen Gentherapie“ wurde bei 10-30% der FA-Patienten beobachtet. Um die Entwicklung von Reversionen besser zu verstehen, erfolgte im Rahmen dieser Arbeit die Untersuchung verschiedener Zelllinien von 5 Patienten im Alter von 11 (Pat. 5) bis 33 (Pat. 4) Jahren. Die FA-A-Patienten 1 und 2 wurden bereits von Gross et al. 2002 als Mosaikpatienten beschrieben. Für die weiteren Patienten führten unterschiedliche Aspekte, wie normale Blutwerte, MMC-tolerante lympho-blastoide Zelllinien und gDNA-Analysen des Blutes zum Mosaikverdacht. Nähere Analysen bestätigten für die FA-D2-Patienten (Pat. 4, 5) ebenfalls das Vorliegen einer Reversion in den Blutzellen. Allen Patienten gemein war die Reversion in Form einer Rückmutation (Pat. 1: c.971T>G, Pat. 2: c.856 C>T, Pat. 4: c.3467-2A>G, Pat. 5: c.3707G>A), welche meist in einem oder in der Nähe eines Mutationsmotives vorlag. Zur Einschätzung des Mosaikstatus in den Patientenblutzellen wurden, neben der meist mehrjährigen Be-obachtung der Blutwerte (Thrombo-, Mono-, Granulo-, Lymphozyten, Hämoglobin), gDNA-, Chromoso-menbruch- und Zellzyklusanalysen durchgeführt. Chromosomenbruchanalysen von Metaphasen der T-Lymphozyten der Patienten 4 und 5 zeigten nach MMC-Behandlung die mosaik-typische bimodale Vertei-lung der Chromosomenbruchraten. Die nur moderat erhöhten Bruchraten in Metaphasen des Patienten 1 sprachen für eine starke Reversion. Zur besseren Abschätzung des Mosaikstatus wurden Zellzyklusanaly-sen an Mischungsreihen aus FA- und nicht FA- Blut durchgeführt. Die Detektionsgrenze für FA-Mosaike lag bei einem Anteil von 30% Zellen mit spontanem/MMC-induziertem G2-Phasen-Arrest. In Anlehnung an Mischungskurven wurden für die vier Patienten Reversionen von 0% (Pat. 4) bis 90-95% (Pat. 2) ange-nommen. Die gDNA-Analyse MACS-sortierter T-/B-Lympho-, Mono- und Granulozyten sowie von Fib-roblasten und lymphoblastoiden Zelllinien ermöglichte einen detaillierten Einblick in die Mosaikstatus auf molekularer Ebene. Wir fanden bei allen Patienten einen unterschiedlich stark ausgeprägten Mosaikstatus ihrer Blutzellreihen. Tendenziell scheinen die Reversionsgrade mit der Zell-Lebensdauer korrelieren, hier-bei zeigen kurzlebige Zellen (Mono-, Granulo-, B-Lymphozyten) höhere Reversionsgrade als langlebige T-Lymphozyten. Das Auftreten von gleichen Reversionen in allen Zelllinien lässt eine Reversion in einer gemeinsamen Vorläuferzelle vermuten. Als Besonderheit fanden wir, unseren Erachtens erstmalig, eine komplette Reversion einer Knochenmark-Fibroblastenzelllinie (Pat. 1). Häufig in Kultur stattfindende Re-versionen in lymphoblastoiden Zelllinien beobachteten wir für alle vier Patienten. Die Mosaikentstehung im Patientenblut konnte mit allen Methoden bestätigt werden. Jede Methode wies Vor- und Nachteile auf. Zur Abschätzung der Mosaikstatus empfiehlt sich deshalb eine Kombination der Methoden. Ein weiteres Projekt beschäftigte sich mit Interaktionen des FANCO (RAD51C) innerhalb der RAD51 Paraloge (RAD51B, -C, -D, XRCC2, XRCC3) und mit RAD51. Die Analysen erfolgten im Mammalian Two- und Three-Hybrid (M2H/M3H) System. Die Untersuchungen bestätigten die meisten der bisher detektierten Interaktionen, welche zur Ausbildung des RAD51C-XRCC3 Komplexes und des, aus den Subkomplexen RAD51B-RAD51C (BC) und RAD51D-XRCC2 (DX2) bestehenden, BCDX2-Komplex führen. Die M3H-Analysen weisen auf eine wichtige Rolle des RAD51B-Proteins bei der Ausprägung dieses Komplexes hin. Es scheint die Ausbildung der RAD51C-RAD51D-Interaktion erst zu ermöglichen und zusätzlich, anders als bisher beobachtet, auch mit XRCC2 zu interagieren. Diese Interaktion wiederum wird durch die Anwesenheit von RAD51D stark gefördert. Unsere M2H-/M3H-Beobachtungen weisen darauf hin, dass die Ausbildung der Subkomplexe für die Entstehung des BDCX2-Komplexes wichtig ist und dieser vermutlich als Ringstruktur vorliegt. Zusätzlich fanden wir Hinweise auf mögliche Wechselwir-kungen zwischen den BCDX2- und den XRCC3-Komplexproteinen. Aufgrund der Beteiligung der Protei-ne an der Doppelstrangläsionsreparatur wurde die Auswirkung von MMC-induzierten DNA-Schäden un-tersucht. Diese führten innerhalb der Subkomplexe zu gegensätzlichen Änderungen der Interaktionsinten-sität. Während die Substanz im DX2-Komplex zum Sinken der Interaktionsstärke führte, erhöhte sich diese im BC-Komplex. Die in der Literatur beschriebene und charakterisierte RAD51C-FANCN-Interation war im M2H-Test nicht darstellbar. Möglicherweise würde diese jedoch durch die Anwesenheit eines drit-ten Proteins gefördert werden. Zusätzlich wurde ein RAD51C-Protein, welches die Patientenmutation R258H enthielt, überprüft. Es zeigte nur in der M3H-Analyse, mit pMRAD51D und nativem RAD51B, nach Behandlung mit MMC eine reduzierte Interaktionsstärke im Vergleich zum Wildtyp. Dies unter-streicht einmal mehr die als hypomorph beschriebene Mutation des Proteins. Das dritte Projekt, die angestrebte Strukturaufklärung des RAD51C-Proteins erwies sich als schwierig. Eine für eine Kristallisation ausreichende Proteinmenge konnte, weder im E. coli-System noch in Insektenzellen oder in Co-Expression mit seinem Interaktionspartner XRCC3, isoliert und aufgereinigt werden. Elektro-phoretische Mobility Shift Assays des CX3-Proteinkomplexes mit DNA-Strukturen (ssDNA, Open Fork, 3‘-/ 5‘-Überhang-Struktur), zeigten eine Bevorzugung des 3‘-Überhang-DNA-Substrates. Diese Art der Analyse könnte in weiterführenden Analysen zur Abschätzung der Auswirkung von Patientenmutationen herangezogen werden. bb / For maintaining genomic stability several repair mechanisms have evolved. Defects in these mechanisms lead to diverse diseases. One of these Fanconi Anemia (FA), first described in 1927, evoked by deficient mechanism of interstrand crosslinks. As causative reason defects within the FA-BRCA pathway were iden-tified leading to chromosome instability. To date 19 different genes were found to cause Fanconi Anemia. Most commonly for the clinical picture of FA are congenital malformations, progressive bone marrow defects as like an increased tumor rates and anemia at a juvenile age. Knowing the affected gene only lim-ited conclusions could be considered of the phenotypical appearance. More likely the kind of mutation and the affected position within the gene seems to correlate with the severity of the disease. Over the time an elevated number of patients with mild phenotype were observed. One possible explanation may be mild mutations another a mosaic state developed within the blood forming cells. The latter was caused by rever-sion of one of both mutations. This kind of “natural gene therapy” was observed in the blood of 10 up to 30 % FA- patients. To get better insights in to the mosaic development we investigated different cell lines of five patients aged between 11 (pat. 5) and 33 (pat. 4) years. Both FA-A patients (pat. 1, 2) were described as mosaic patients before by Gross et al. 2002. The other patients arouse suspicion for developing mosai-cism by different aspects like normal blood counts, MMC tolerant lymphoblastiode cell lines and analyzing gDNA from blood. Detailed analyses confirmed the reversion of one mutation in blood of the FA-D2 patients (pat. 4, 5). In common for all four mosaic was the kind of reversion, a back mutation (pat. 1: c.971T>G, pat. 2: c.856 C>T, pat. 4: c.3467-2A>G, pat. 5: c.3707G>A) mostly in or near by a mutation motive. To get insights in to the mosaic state of the patients’ blood cells, gDNA, chromosomal breakage and cell cycle analyses were performed and blood cell counts of thrombo-, mono-, granulo-, lymphocytes and haemoglobin were observed for several years. Chromosomal breakage analyses of t-lymphocytes met-aphases (pat. 4, 5) treated with MMC showed a mosaicism typical bimodal distribution. The only moderate increased chromosomal breakage rate in metaphases of patient 1 points out a strong pronounced reversion. For better estimation of the Mosaic state in patient blood we performed cell cycle analysis with mixtures of FA- and non FA-blood. Thereby we observed the border for mosaic detection at a degree of 30 % cells with spontaneous /MMC induced G2-phase arrest. Compared to the mixing study reversion degrees of 0 % (pat. 4) up to 90-95 % (pat. 2) were assumed for four of the patients. At molecular base gDNA analyses of MACS sorted T-/ B- lympho, mono and granulocytes as well as from fibroblasts and lymphoblastoide cell lines allowed a more detailed insight in to the mosaic statuses. In all patients we observed different distinct of mosaic state in their blood cell lines. We observed a tendency of correlation between reversion degree and the longevity of blood cells – cells with short life spans (mono-, granulo-, B-lymphoytes) showed higher reversion degrees than log living T-lymphocytes. The fact that we detected the same rever-sion in the different cell lines of a patient suggests a reversion within a common precursor cell. Further we observed, as we know for the first time, a reversion within a bone marrow fibroblast line (pat. 1). Four of our patients showed commonly observed reversions in cultured lymphoblastoide cell lines. With each of the tested methods we could show mosaic development in blood of our patients. Every of them showed pros and cons. For this reason a combination of the different methods would be recommendable for cal-culation of the mosaic state in patient blood. The second project investigated the interactions of FANCO (RAD51C) within the group of the RAD51 paralogs (RAD51B, -C, -D, XRCC2, XRCC3) and with RAD51. Interactions were tested by Mammalian Two- and Three-Hybrid (M2H/M3H) System. Our investigations confirm most of the up to now detected interactions leading to RAD51C-XRCC3-complex (CX3) and RAD51B-RAD51C-RAD51D-XRCC2 com-plex (BCDX2) formation – latter consisting of the subcomplexes RAD51B-RAD51C (BC) and RAD51D-XRCC2 (DX2). M3H analyses give a hint for the importance of the RAD51B protein for the BCDX2 complex formation. The protein seems to be necessary for RAD51C-RAD51D interaction and also to interact, other than intended before, with XRCC2. In turn this interaction seems to be strongly promoted by RAD51D. In M2H and M3H analyses we found evidence of the importance of subcomplex formation for the formation of the whole BCDX2 complex and that the complex may be a circular structure. Addi-tionaly we observed evidence for interdependency between the BCDX2- and the XRCC3- complex pro-teins. Because of the proteins involvement into the double strand lesion repair the effect of MMC induced DNA lesions were tested. MMC treatment leads to different changes of interaction within the subcom-plexes. We observed a decrease of interaction strength between RAD51D and XRCC2 and an increased interaction within the BC-complex. The interaction between RAD51C and FANCN was not detectable in our M2H assay but may be promoted by another protein in M3H analysis. Additionally we tested a RAD51C protein inherited the patient mutation R258H. Only in M3H analysis with pMRAD51D and native RAD51B and with additional MMC treatment reduced interaction strength was detectable compared to the wildtype RAD51C. This underlines the hypomorphic nature of the mutation described before. The third project – the elucidation of the RAD51C protein structure proved to be difficult. We could not isolate and purify enough protein for crystallization, neither by expression within a E.coli or an insect cell system not even by co-expression of the complex partner XRCC3. Electrophoretic mobility shift assays of the CX3 complex with different DNA-structures (ssDNA, open fork, 3’- and 5’- overhang structures) showed preference for the 3’-overhang DNA substrate. This method may be used for further investiga-tions of mutations in patient DNA in future.
5

Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

Müller, Eike, Wang, Weijia, Qiao, Wenlian, Bornhäuser, Martin, Zandstra, Peter W., Werner, Carsten, Pompe, Tilo 24 August 2016 (has links) (PDF)
Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.
6

Role of NFAT (Nuclear Factor of Activated T Cells) Transcription Factors in Hematopoiesis

Arabanian, Laleh Sadat 19 November 2012 (has links) (PDF)
Understanding the transcriptional mechanisms that control hematopoiesis and the interaction between hematopoietic stem cells and the bone marrow (BM) microenvironment in vivo is of considerable interest. The calcineurin-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) is known as master regulator of cytokine production in T lymphocytes and therefore central for T cell-dependent immune reactions, but has also been shown to regulate a process of differentiation and tissue adaptation in various cell types. The activation of NFAT is dependent on the calcium level within the cell. In resting cells, calcium levels are low and NFAT is cytoplasmic and inactive. A sustained increase in the internal calcium concentration within an external stimuli leads to activation of the calcium-dependent calcineurin, followed by dephosphorylation and nuclear translocation of NFAT. We have previously shown that NFATc2, a member of the NFAT family, is expressed in CD34+ hematopoietic stem cells (HSC). A mouse model harboring NFATc2 deficiency provides the opportunity for in vivo investigation of the role of NFATc2 in hematopoiesis. Our recent observations showed that aged mice lacking the transcription factor NFATc2 develop peripheral blood anemia and thrombocytopenia, BM hypoplasia and extramedullary hematopoiesis in spleen and liver. The proliferation and differentiation of NFATc2-deficient hematopoietic stem cells ex vivo, however, was found to be intact. It remained therefore unclear whether the disturbed hematopoiesis in NFATc2-deficient mice was caused by the hematopoietic or the stroma component of the BM hematopoietic niche. In the current study we dissected the relative contribution of hematopoietic and stroma cells to the phenotype of the NFATc2-deficent mice by transplanting immuno-magnetically purified NFATc2-deficient (KO) HSCs to lethally irradiated wild type (WT) mice, and vice versa. After a post-transplantation period of 6-8 months, peripheral blood, BM as well as spleen and liver of the transplanted animals were analyzed and compared to WT and KO mice transplanted with control cells. Transplantation of NFATc2-deficient HSCs into WT recipients (KO WT) induced similar hematological abnormalities as those occurring in non-transplanted KO mice or in KO mice transplanted with KO cells (KO KO). Compared to WT mice transplanted with WT cells (WT WT), KO WT mice showed evidence of anemia, thrombocytopenia and a significantly reduced number of hematopoietic cells in their BM. Likewise, KO WT mice developed clear signs of extramedullary hematopoiesis in spleen and liver, which was not the case in WT WT control animals. In addition to the hematopoietic abnormalities, transplantation of NFATc2-deficient HSC also induced osteogenic abnormalities such as BM sclerosis and fibrosis in WT mice. This phenomenon was rather subtle and of incomplete penetrance, but never seen in mice transplanted with WT cells. These data demonstrate for the first time, that the NFATc2 transcription factor directly regulates the intrinsic function of hematopoietic stem cells in vivo. However, the transcriptional targets for NFAT in these cells are yet unknown. In addition to hematopoietic stem cells, NFATc2 has been shown to be expressed in a lineage-specific manner during myeloid differentiation and, notably, is maintained during megakaryopoiesis while it is suppressed during the differentiation of neutrophils. Bone marrow megakaryocytes are the precursors of peripheral blood platelets and therefore constitute an integral part of primary hemostasis, thrombosis and wound healing. The biological role of NFAT in megakaryocytes is unknown. We have recently shown that NFATc2 is not necessary for megakaryocytic differentiation. On the other hand, recent evidence suggests that NFATc2 is required for the transcription of specific megakaryocytic genes. In this study, we showed that activation of the calcineurin/NFAT pathway in either primary megakaryocytes or CMK megakaryocytic cells forces the cells to go into apoptosis. Cell death in megakaryocytes is induced by treating the cells with the calcium ionophore ionomycin and suppressed by either the pan-caspase inhibitor zVAD or the calcineurin inhibitor cyclosporin A (CsA). Ionomycin stimulation of megakaryocytes leads to the expression of Fas Ligand (FASLG), a pro-apoptotic member of the tumor necrosis factor superfamily. Expression of FASLG was detectable as early as four hours after stimulation on the membrane of ionomycin-treated megakaryocytes, was augmented in cells stably overexpressing NFATc2, and was suppressed in cells either pretreated with CsA or expressing the specific peptide inhibitor of NFAT, VIVIT. To investigate the physiological relevance of FASLG expression on megakaryocytes, we performed co-cultures of megakaryocytes with Fas-expressing T-lymphocytes, in which CMK cells were left either unstimulated or pre-stimulated with ionomycin and then added to Jurkat cells. The presence of ionomycin-stimulated CMK cells, but not of unstimulated cells or cells stimulated in the presence of CsA, significantly induced apoptosis in Jurkat cells. Overexpression of NFATc2 in CMK cells enhanced their potency to induce apoptosis in Jurkat cells, while cells expressing VIVIT were less effective. Apoptosis induction of Jurkat cells by stimulated CMK cells was partially blocked by the presence of either a neutralizing antibody against FASLG or an antagonistic antibody to Fas during the co-culture period, indicating involvement of the FASLG/Fas apoptosis pathway. These results represent the first clear evidence for a biological function of the calcineurin/NFAT pathway in megakaryocytes, namely the regulation of Fas/FASLG-dependent apoptosis. Second, they underline that the biological role of megakaryocytes is not restricted to the production of proteins and other cellular structures for platelet assembly, but that this population of cells fulfills an independent regulatory function in the context of the surrounding tissue. Finally, we have identified by RNA sequencing analysis of NFATc2-expressing and -deficient cells, the entire set of genes which is induced by NFATc2 in stimulated megakaryocytes. Functional pathway analysis suggests an involvement of NFATc2 in pro-inflammatory pathways in these cells. The significance of these findings has to be addressed in further studies.
7

Biomathematische Modellierung von Therapiewirkungen bei Lymphomerkrankungen – Ein Beitrag zur Medizinischen Systembiologie

Scholz, Markus 19 December 2012 (has links) (PDF)
In der vorliegenden Habilitationsschrift werden biomathematische Modelle beschrieben, mit deren Hilfe unterschiedliche Wirkungen von zytotoxischen Chemotherapien beschrieben und vorhergesagt werden können. Die meisten Anwendungen beziehen sich dabei auf Therapien von Lymphomerkrankungen. Die dargestellten Modellkonzepte sind aber prinzipiell auch auf Therapien anderer Erkrankungen übertragbar. Den Hauptteil der Arbeit umfassen Modellierungen der Hämatotoxizität einer konventionellen Chemotherapie in Abhängigkeit von der Art, der Dosierung und der zeitlichen Verabfolgung der zytotoxischen Substanzen, dem Einsatz von hämatopoetischen Wachstumsfaktoren und individuellen Risikofaktoren. Hierbei wurde die Hämatopoese im Knochenmark, die Pharmakokinetik und -dynamik hämatopoetischer Wachstumsfaktoren sowie die Wirkung der Chemotherapie mit Hilfe gewöhnlicher Differentialgleichungssysteme beschrieben. Ähnliche Modellierungen der murinen Hämatopoese begleitet und beeinflussen diese Arbeiten. Die Modelle ermöglichen eine Reihe von klinisch relevanten Vorhersagen, insbesondere bezüglich risikoadaptierter Therapien und Optimierung der Gabe von G-CSF. Diese wurden teilweise in später durchgeführten klinischen Studien validiert. Des Weiteren wurde das Risiko des Auftretens sekundärer hämatologischer Malignitäten in Abhängigkeit von den eingesetzten Primär- und Rezidivtherapien mittels statistischer Modelle beschrieben. Hierbei stand speziell die Frage im Vordergrund, wie sich entsprechende multiparametrische Modelle geeignet reduzieren lassen, um überhaupt parametrisiert werden zu können. Abschließend wird ein Konzept für ein immunologisches Tumormodell vorgeschlagen, mit dessen Hilfe perspektivisch die Tumorkontrolle unter kombinierten Chemo- und Immuntherapien des CD20 positiven B-Zelllymphoms vorhergesagt werden könnte. Die in dieser Arbeit vorgestellten mathematischen Modelle und Modellkonzepte stellen einen Beitrag zur Planung von klinischen Studien mittels systembiologischer Modelle dar.
8

Ein mathematisches Kompartimentmodell der murinen Erythro- und Granulopoese unter simultaner Gabe von Erythropoietin und G-CSF

Gebauer, Corinna Mirjam 05 April 2011 (has links) (PDF)
In dieser Arbeit wird das in vivo-Verhalten der murinen Erythro- und Granulopoese, einschließlich der hämatopoetischer Stammzellen, unter dem Einfluß von exogen appliziertem G-CSF und Erythropoietin mit Hilfe eines mathematischen Kompartimentmodelles untersucht. Der Schwerpunkt liegt auf der Identifizierung von linienübergreifenden Wachstumsfaktoreffekten. Zu diesem Zweck werden experimentelle Daten mit den Modellsimulationen unter Berücksichtigung verschiedener Modellannahmen verglichen. Die experimentellen Daten für die Modellentwicklung stammen zum einem kleinen Teil aus der Literatur, hauptsächlich betrachtet wurden jedoch Daten einer kooperierenden niederländischen Arbeitsgruppe. Die beiden Wachstumsfaktoren wurden kontinuierlich und simultan mittels osmotischer Minipumpen subkutan über einen längeren Zeitraum appliziert. Die experimentellen Daten werden zunächst mit Hilfe eines nichtlinearen Regressionsmodelles analysiert und quantitativ beschrieben, wobei Interaktionseffekte zwischen den Wachstumsfaktoren besondere Berücksichtigung finden. Es wird dann ein umfassendes mathematischen Differentialgleichungsmodell der murinen Erythro- und Granulopoese unter Berücksichtigung der linienübergreifenden Wachstumsfaktoreffekte und Interaktionen aufgestellt. Es wird zunächst überprüft, ob sich die beobachteten Daten unter Simultanstimulation durch die einfache Zusammenschaltung zweier bereits existierender Einzelmodelle der Erythro- und Granulopoese ohne weitere Modellannahmen erklären lassen. Dazu werden Daten von normalen als auch splenektomierten Tieren berücksichtigt. Es zeigt sich nach Prüfung verschiedener Hypothesen, dass erst unter Annahme einer durch Erythropoietin potenzierten Amplifikation der primär G-CSF-abhängigen Zellstufe der lienalen CFU-GM die experimentell beobachteten Effekte erklärt werden können. Es wird außerdem gezeigt, daß sich mit demselben Modell und denselben Modellparametern die bei splenektomierten Tieren zu beobachtetende G-CSFabhängige Entwicklung einer EPO-resistenten Anämie gut erklärt wird. In einem zweiten Teil der Arbeit wird ein Modellkonzept erarbeitet, mit welchem sich die Effekte nach Langzeitgabe von G-CSF mittels rezeptorvermitteltem G-CSF-Abbau erklären lassen. In einem dritten Teil wird geprüft, ob sich die hämatopoetische Zellzahldynamik nach Absetzen der G-CSF-Gabe durch eine aktive Rückmigration von Progenitoren aus der Milz in das Knochenmark erklären läßt. Das in dieser Arbeit entwickelte kombinierte Modell der Erythro- und Granulopoese impliziert eine Reihe von weiteren Fragen und bedarf der Überprüfung und Weiterentwicklung anhand weiterer experimenteller Daten. Dafür werden entsprechende Vorschläge erarbeitet, die weitere Einblicke in das komplexe Systemverhalten der Hämatopoese liefern könnten.
9

Modellierung von Reverse Engineering Strategien zur Identifizierung genetischer Netzwerke aus unvollständigen Genexpressionsdate

Missal, Kristin 20 October 2017 (has links)
Genetische Netzwerke zeigen wie Gene über ihre Produkte wieder andere Gene regulieren. Sind die Netzwerktopologie und die Art der Einflüsse bekannt, können Vorhersagen über das dynamische Verhalten der individuellen genetischen Expression von Zellen getroffen werden. Mögliche Modelle für genetische Netzwerke sind Boolesche Netze und Dynamische Bayessche Netze. Genregulationsnetzwerke zu analysieren und zu verstehen, ist auf einer abstrakten Ebene mit Hilfe eines Computers und dieser Modelle möglich. In der vorliegenden Arbeit wird auf der Basis von in-silico Experimenten analysiert, wie ein Modell für genetische Netzwerke aus Genexpressionsdaten von einzelnen Zellen gelernt werden kann, wenn nur unvollständiges Wissen über die initialen Genexpressionszustände vorliegt. Der initiale Expressionszustand wird unvollständig festgelegt, indem die Expressionsstärke einiger Gene gezielt manipuliert wird. Boolesche Netze repräsentieren das genetische Netzwerk der in-silico Zellen. Ihre Regeln sind deterministischer Art und sind bei vollständig gegebenen Daten mit dem Reverse Engineering Algorithmus REVEAL einfach rekonstruierbar. REVEAL hat keinen Ansatz für unbeobachtete Werte in den Daten. Es wird gezeigt, dass die Inputelemente und Booleschen Regeln für Elemente lernbar sind, deren Anzahl an Inputelementen kleiner oder gleich der manipulierbaren Gene ist. Durch Rauschen in den Daten ist es jedoch unmöglich deterministische Beziehungen korrekt zu charakterisieren. Deshalb wird angestrebt, aus den künstlichen Expressionsdaten ein Dynamisch Bayessches Netz zu lernen. Es modelliert die verbleibende Unsicherheit über die Abhängigkeiten in dem genetischen Netzwerk. Eine Analyse des Verfahrens Strukturelle Erwartungswert Maximierung (SEM) ergab, dass die fehlenden Beobachtungen umgangen werden müssen. Eine getrennte Auswertung der Experimente, die sich in den manipulierten Genen unterscheiden, ist ein Weg ein gutes Modell zu lernen, wenn mindestens zwei Gene gleichzeitig manipulierbar sind. Kann die Expressionsstärke nur von einem Gen festgelegt werden, sind mit dieser Strategie die regulierenden Gene identifizierbar, die unabhängig von den anderen regulierenden Genen den Expressionszustand des Zielgens wesentlich bestimmen. Qualitatives Vorwissen über das interessierende genetische Netzwerk kann eine umfangreiche Verringerung des notwendigen Stichprobenumfangs herbeiführen.
10

Role of NFAT (Nuclear Factor of Activated T Cells) Transcription Factors in Hematopoiesis: Role of NFAT (Nuclear Factor of Activated T Cells) Transcription Factors in Hematopoiesis

Arabanian, Laleh Sadat 07 November 2012 (has links)
Understanding the transcriptional mechanisms that control hematopoiesis and the interaction between hematopoietic stem cells and the bone marrow (BM) microenvironment in vivo is of considerable interest. The calcineurin-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) is known as master regulator of cytokine production in T lymphocytes and therefore central for T cell-dependent immune reactions, but has also been shown to regulate a process of differentiation and tissue adaptation in various cell types. The activation of NFAT is dependent on the calcium level within the cell. In resting cells, calcium levels are low and NFAT is cytoplasmic and inactive. A sustained increase in the internal calcium concentration within an external stimuli leads to activation of the calcium-dependent calcineurin, followed by dephosphorylation and nuclear translocation of NFAT. We have previously shown that NFATc2, a member of the NFAT family, is expressed in CD34+ hematopoietic stem cells (HSC). A mouse model harboring NFATc2 deficiency provides the opportunity for in vivo investigation of the role of NFATc2 in hematopoiesis. Our recent observations showed that aged mice lacking the transcription factor NFATc2 develop peripheral blood anemia and thrombocytopenia, BM hypoplasia and extramedullary hematopoiesis in spleen and liver. The proliferation and differentiation of NFATc2-deficient hematopoietic stem cells ex vivo, however, was found to be intact. It remained therefore unclear whether the disturbed hematopoiesis in NFATc2-deficient mice was caused by the hematopoietic or the stroma component of the BM hematopoietic niche. In the current study we dissected the relative contribution of hematopoietic and stroma cells to the phenotype of the NFATc2-deficent mice by transplanting immuno-magnetically purified NFATc2-deficient (KO) HSCs to lethally irradiated wild type (WT) mice, and vice versa. After a post-transplantation period of 6-8 months, peripheral blood, BM as well as spleen and liver of the transplanted animals were analyzed and compared to WT and KO mice transplanted with control cells. Transplantation of NFATc2-deficient HSCs into WT recipients (KO WT) induced similar hematological abnormalities as those occurring in non-transplanted KO mice or in KO mice transplanted with KO cells (KO KO). Compared to WT mice transplanted with WT cells (WT WT), KO WT mice showed evidence of anemia, thrombocytopenia and a significantly reduced number of hematopoietic cells in their BM. Likewise, KO WT mice developed clear signs of extramedullary hematopoiesis in spleen and liver, which was not the case in WT WT control animals. In addition to the hematopoietic abnormalities, transplantation of NFATc2-deficient HSC also induced osteogenic abnormalities such as BM sclerosis and fibrosis in WT mice. This phenomenon was rather subtle and of incomplete penetrance, but never seen in mice transplanted with WT cells. These data demonstrate for the first time, that the NFATc2 transcription factor directly regulates the intrinsic function of hematopoietic stem cells in vivo. However, the transcriptional targets for NFAT in these cells are yet unknown. In addition to hematopoietic stem cells, NFATc2 has been shown to be expressed in a lineage-specific manner during myeloid differentiation and, notably, is maintained during megakaryopoiesis while it is suppressed during the differentiation of neutrophils. Bone marrow megakaryocytes are the precursors of peripheral blood platelets and therefore constitute an integral part of primary hemostasis, thrombosis and wound healing. The biological role of NFAT in megakaryocytes is unknown. We have recently shown that NFATc2 is not necessary for megakaryocytic differentiation. On the other hand, recent evidence suggests that NFATc2 is required for the transcription of specific megakaryocytic genes. In this study, we showed that activation of the calcineurin/NFAT pathway in either primary megakaryocytes or CMK megakaryocytic cells forces the cells to go into apoptosis. Cell death in megakaryocytes is induced by treating the cells with the calcium ionophore ionomycin and suppressed by either the pan-caspase inhibitor zVAD or the calcineurin inhibitor cyclosporin A (CsA). Ionomycin stimulation of megakaryocytes leads to the expression of Fas Ligand (FASLG), a pro-apoptotic member of the tumor necrosis factor superfamily. Expression of FASLG was detectable as early as four hours after stimulation on the membrane of ionomycin-treated megakaryocytes, was augmented in cells stably overexpressing NFATc2, and was suppressed in cells either pretreated with CsA or expressing the specific peptide inhibitor of NFAT, VIVIT. To investigate the physiological relevance of FASLG expression on megakaryocytes, we performed co-cultures of megakaryocytes with Fas-expressing T-lymphocytes, in which CMK cells were left either unstimulated or pre-stimulated with ionomycin and then added to Jurkat cells. The presence of ionomycin-stimulated CMK cells, but not of unstimulated cells or cells stimulated in the presence of CsA, significantly induced apoptosis in Jurkat cells. Overexpression of NFATc2 in CMK cells enhanced their potency to induce apoptosis in Jurkat cells, while cells expressing VIVIT were less effective. Apoptosis induction of Jurkat cells by stimulated CMK cells was partially blocked by the presence of either a neutralizing antibody against FASLG or an antagonistic antibody to Fas during the co-culture period, indicating involvement of the FASLG/Fas apoptosis pathway. These results represent the first clear evidence for a biological function of the calcineurin/NFAT pathway in megakaryocytes, namely the regulation of Fas/FASLG-dependent apoptosis. Second, they underline that the biological role of megakaryocytes is not restricted to the production of proteins and other cellular structures for platelet assembly, but that this population of cells fulfills an independent regulatory function in the context of the surrounding tissue. Finally, we have identified by RNA sequencing analysis of NFATc2-expressing and -deficient cells, the entire set of genes which is induced by NFATc2 in stimulated megakaryocytes. Functional pathway analysis suggests an involvement of NFATc2 in pro-inflammatory pathways in these cells. The significance of these findings has to be addressed in further studies.

Page generated in 0.0276 seconds