21 |
On the Dimension of a Certain Measure Arising from a Quasilinear Elliptic Partial Differential EquationAkman, Murat 01 January 2014 (has links)
We study the Hausdorff dimension of a certain Borel measure associated to a positive weak solution of a certain quasilinear elliptic partial differential equation in a simply connected domain in the plane. We also assume that the solution vanishes on the boundary of the domain. Then it is shown that the Hausdorff dimension of this measure is less than one, equal to one, greater than one depending on the homogeneity of the certain function. This work generalizes the work of Makarov when the partial differential equation is the usual Laplace's equation and the work of Lewis and his coauthors when it is the p-Laplace's equation.
|
22 |
Computability and fractal dimensionReimann, Jan. Unknown Date (has links) (PDF)
University, Diss., 2004--Heidelberg.
|
23 |
Dinâmica complexa e formalismo termodinâmico / Complex dynamics and thermodynamic formalismCarlos Alberto Siqueira Lima 01 April 2011 (has links)
Estudaremos sistemas dinâmicos complexos da esfera de Riemann, e empregaremos técnicas do Formalismo Termodinâmico incluindo a fórmula de Bowen para provar que a dimensão de Hausdorff \'dim IND. H\' J( \'f IND. lâmbda\' ) do conjunto de Julia J( \'f IND. lâmbda\' ) de uma família holomorfa de funções racionais hiperbólicas f \'lambda\' define uma função real analítica do parâmetro \'lambda\' . Este resultado foi provado por Ruelle [44] em 1981. Daremos uma prova alternativa usando movimentos holomorfos. Trata-se de uma técnica inovadora, originalmente desenvolvida por Mañé, Sad e Sullivan no trabalho [31] sobre estabilidade estrutural de sistemas dinâmicos complexos / We shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
|
24 |
Algumas Propriedades Geométricas do Conjunto de Julia / Some Geometric Properties of the Julia SetLiberato, Serginei José do Carmo 24 February 2014 (has links)
Made available in DSpace on 2015-03-26T13:45:36Z (GMT). No. of bitstreams: 1
texto completo.pdf: 680613 bytes, checksum: d49992ace83b65d0a439badc8cc946f3 (MD5)
Previous issue date: 2014-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study some geometric properties of Julia sets and filled-in Julia sets of polynomials. In addition, we seek a form of measure the Julia set, for this we use the Hausdorff measure and determine a lower bound to the Hausdorff dimension of the Julia set. / Neste trabalho estudamos algumas propriedades geométricas do Conjunto de Julia e do e Conjunto de Julia Cheio. Além disso, procuramos uma forma de mensurar o conjunto de Julia, para isso utilizamos a medida de Hausdorff e determinamos uma cota inferior para a dimensão de Hausdorff do conjunto de Julia.
|
25 |
Dimensão de Hausdorff e algumas aplicações / Hausdorff Dimension and some applicationsMucheroni, Laís Fernandes [UNESP] 18 August 2017 (has links)
Submitted by LAÍS FERNANDES MUCHERONI (lais.mucheroni@gmail.com) on 2017-09-18T17:23:23Z
No. of bitstreams: 1
dissertacao_mestrado_lais.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1
mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) / Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1
mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Previous issue date: 2017-08-18 / Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal. / We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
|
26 |
Resultados genéricos sobre entropia e dimensão de Hausdorff para difeomorfismos conservativos sobre superfícies / Generic properties about entropy and Hausdorff dimensions for area preserving diffeomorphisms of surfacesThiago Aparecido Catalan 28 February 2008 (has links)
Apresentamos duas propriedades genéricas para difeomorfismos conservativos da classe \'C POT.1\' sobre uma superfície compacta de dimensão dois. Obtemos uma limitação inferior para entropia topológica de difeomorfismos genéricos, e mostramos que tais difeomorfismos sempre possuem conjuntos invariantes fechados com órbitas densas e dimensão de Hausdorff dois / We present two generic properties of \'C POT.1\" area preserving diffeomorphisms of a two dimensional compact oriented surface. We obtain a lower bound for the topological entropy of a generic diffeomorphisms, and we show that such a diffeomorphism always has closed invariant sets with dense orbits and Hausdorff dimension two
|
27 |
Um estudo da teoria das dimensões aplicado a sistemas dinâmicos / A study of dimension theory applied to dynamical systemAlex Pereira da Silva 13 March 2015 (has links)
Este trabalho se propõe a estudar o comportamento assintótico dos sistemas dinâmicos autônomos respaldado na Teoria das Dimensões. Mais precisamente, vamos compreender de que maneira nos é útil limitar a dimensão fractal do atrator global de um semigrupo a fim de estudar a dinâmica em dimensão finita, sem que se perca informações sobre a dinâmica ao fazê-lo. Para tanto, o Teorema de Mañé tem um papel decisivo junto às propriedades da dimensão de Hausdorff e a da dimensão fractal; nos permitindo encontrar uma projeção cuja restrição ao atrator é injetora sobre um espaço de dimensão finita. Constatamos ainda que esta abordagem por projeções se aplica largamente a semigrupos originados de equações diferenciais em espaços de Banach de dimensão infinita. / In this work, we study the asymptotic behavior of autonomous dynamical systems supported on the Dimension Theory. More precisely, we understand how fractal dimension finiteness of the global attractor of a semigroup can be used to study the dynamics in finite dimension, without losing information on the dynamics in doing so. For this purpose, the Mañés Theorem plays a decisive role considering the Hausdorff dimension properties and the fractal dimension; thanks to which we managed to find a projection whose restriction to the attractor is an injective application over a finite dimensional space. Besides, we also acknowledge that this projections approach is largely applied to semigroups arrising from differential equations in infinite dimensional Banach spaces.
|
28 |
Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and DimensionBrucks, Karen M. (Karen Marie), 1957- 05 1900 (has links)
This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function,
f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the itinerary of λ(P) under the map is λ(P)f_e is H_ϖ(P).
In Chapter four it is shown that only period doubling or period halving bifurcations can occur for the family λf_e, λΣ[0,1]. Results concerning how the size of a stable orbit changes as bifurcations of the family λf_e occur are given.
Let λΣ[0,1] be such that 1/2 is a periodic point of λf_e. In this case 1/2 is superstable. Chapter five investigates the boundary of the basin of attraction of this stable orbit. An algorithm is given that yields a graph directed construction such that the object constructed is the basin boundary. From this we analyze the Hausdorff dimension and measure in that dimension of the boundary. The dimension is related to the simple β-numbers, as defined by Parry.
|
29 |
Study of the fractals generated by contractive mappings and their dimensions / 縮小写像により生成されるフラクタルとそれらの次元に関する研究Inui, Kanji 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22534号 / 人博第937号 / 新制||人||223(附属図書館) / 2019||人博||937(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
30 |
Topological Properties of Invariant Sets for Anosov Maps with HolesSimmons, Skyler C. 10 November 2011 (has links) (PDF)
We begin by studying various topological properties of invariant sets of hyperbolic toral automorphisms in the linear case. Results related to cardinality, local maximality, entropy, and dimension are presented. Where possible, we extend the results to the case of hyperbolic toral automorphisms in higher dimensions, and further to general Anosov maps.
|
Page generated in 0.0247 seconds