• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 23
  • 18
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Unconventional fuels and oxidizers in HCCI engines - the road to zero-carbon highly efficient internal combustion engines

Mohammed, Abdulrahman 04 1900 (has links)
Internal combustion engines (ICEs) are essential for the welfare of today’s human civilization yet they contribute to almost 10% of the global CO2 emissions. Reducing the carbon footprint of the ICEs can be achieved by either increasing the engine efficiency to reduce fuel consumption or the utilization of carbon-neutral fuels. This dissertation aims to investigate the effect of the oxidizer composition on the efficiency and performance of the homogenous charge compression ignition (HCCI) engine. It also aims to study the behavior of hydrogen in HCCI engines. The experiments are conducted using a Cooperative Fuel Research (CFR) engine. The study also involves using chemical kinetics simulations to estimate the ignition delay time of hydrogen which is relevant to the HCCI mode of combustion. The results suggest that the specific heat ratio of the oxidizer does not significantly affect the HCCI engine efficiency. On the fuel side, hydrogen showed high sensitivity to engine running conditions due to the lack of negative temperature coefficient (NTC).
42

Simulating the Influence of Injection Timing, Premixed Ratio, and Inlet Temperature on Natural Gas / Diesel Dual-Fuel HCCI Combustion in a Diesel Engine

Ghomashi, Hossein, Olley, Peter, Mason, Byron A., Ebrahimi, Kambiz M. 01 1900 (has links)
Yes / Dual-fuel HCCI engines allow a relatively small quantity of diesel fuel to be used to ignite a variety of fuels such as natural gas or methane in HCCI mode. The gaseous fuel is mixed with the incoming air, and diesel fuel is sprayed into the cylinder by direct injection. Mathematical modelling is used to investigate the effects of parameters such as premixed ratio (fuel ratio) and pilot fuel injection timing on combustion of a dual-fuel HCCI engines. A CFD package is used with AVL FIRE software to simulate dual-fuel HCCI combustion in detail. The results establish a suitable range of premixed ratio and liquid fuel injection timing for low levels of NOx, CO and HC emissions along with a reliable and efficient combustion. Dual-fuel HCCI mode can increase NOx emission with lower premixed ratios in comparison to normal HCCI engines, but it is shown that the NOx emission reduces above a certain level of the premixed ratio. Due to the requirement of homogenous mixing of liquid fuel with air, the liquid fuel injection is earlier than for diesel engines. It is shown that, with careful control of parameters, dual-fuel HCCI engines have lower emissions in comparison with conventional engines.
43

Modelling the combustion in a dual fuel HCCI engine. Investigation of knock, compression ratio, equivalence ratio and timing in a Homogeneous Charge Compression Ignition (HCCI) engine with natural gas and diesel fuels using modelling and simulation.

Ghomashi, Hossein January 2013 (has links)
This thesis is about modelling of the combustion and emissions of dual fuel HCCI engines for design of “engine combustion system”. For modelling the combustion first the laminar flamelet model and a hybrid Lagrangian / Eulerian method are developed and implemented to provide a framework for incorporating detailed chemical kinetics. This model can be applied to an engine for the validation of the chemical kinetic mechanism. The chemical kinetics, reaction rates and their equations lead to a certain formula for which the coefficients can be obtained from different sources, such as NASA polynomials [1]. This is followed by study of the simulation results and significant findings. Finally, for investigation of the knock phenomenon some characteristics such as compression ratio, fuel equivalence ratio, spark timing and their effects on the performance of an engine are examined and discussed. The OH radical concentration (which is the main factor for production of knock) is evaluated with regard to adjustment of the above mentioned characteristic parameters. In the second part of this work the specification of the sample engine is given and the results obtained from simulation are compared with experimental results for this sample engine, in order to validate the method applied in AVL Fire software. This method is used to investigate and optimize the effects of parameters such as inlet temperature, fuels ratio, diesel fuel injection timing, engine RPM and EGR on combustion in a dual fuel HCCI engine. For modelling the dual fuel HCCI engine AVL FIRE software is applied to simulate the combustion and study the optimization of a combustion chamber design. The findings for the dual fuel HCCI engine show that the mixture of methane and diesel fuel has a great influence on an engine's power and emissions. Inlet air temperature has also a significant role in the start of combustion so that inlet temperature is a factor in auto-ignition. With an increase of methane fuel, the burning process will be more rapid and oxidation becomes more complete. As a result, the amounts of CO and HC emissions decrease remarkably. With an increase of premixed ratio beyond a certain amount, NOX emissions decrease. With pressure increases markedly and at high RPM, knock phenomenon is observed in HCCI combustion.
44

Modeling of Diesel HCCI combustion and its impact on pollutant emissions applied to global engine system simulation / Modélisation de la combustion diesel HCCI et de son impact sur la formation de polluants appliquée à la simulation système

Dulbecco, Alessio 02 February 2010 (has links)
La législation sur les émissions de polluants des Moteurs à Combustion Interne (ICEs) est de plus en plus contraignante et représente un gros défi pour les constructeurs automobiles. De nouvelles stratégies de combustion telles que la Combustion à Allumage par Compression Homogène (HCCI) et l’exploitation de stratégies d’injections multiples sont des voies prometteuses qui permettent de respecter les normes sur les émissions de NOx et de suies, du fait que la combustion a lieu dans un mélange très dilué et par conséquent à basse température. Ces aspects demandent la création d’outils numériques adaptés à ces nouveaux défis. Cette thèse présente le développement d’un nouveau modèle 0D de combustion Diesel HCCI : le dual Combustion Model (dual - CM). Le modèle dual-CM a été basé sur l’approche PCM-FPI utilisée en Mécanique des Fluides Numérique (CFD) 3D, qui permet de prédire les caractéristiques de l’auto-allumage et du dégagement de chaleur de tous les modes de combustion Diesel. Afin d’adapter l’approche PCM-FPI à un formalisme 0D, il est fondamental de décrire précisément le mélange à l’intérieur du cylindre. Par consequent, des modèles d’évaporation du carburant liquide, de formation de la zone de mélange et de variance de la fraction de mélange, qui permettent d’avoir une description détaillée des proprietés thermochimiques locales du mélange y compris pour des configurations adoptant des stratégies d’injections multiples, sont proposés. Dans une première phase, les résultats du modèle ont été comparés aux résultats du modèle 3D. Ensuite, le modèle dual-CM a été validé sur une grande base de données expérimentales; compte tenu du bon accord avec l’expérience et du temps de calcul réduit, l’approche présentée s’est montrée prometteuse pour des applications de type simulation système. Pour conclure, les limites des hypothèses utilisées dans dual-CM ont été investiguées et des perspectives pour les dévélopements futurs ont été proposées. / More and more stringent restrictions concerning the pollutant emissions of Internal Combustion Engines (ICEs) constitute a major challenge for the automotive industry. New combustion strategies such as Homogeneous Charge Compression Ignition (HCCI) and the implementation of complex injection strategies are promising solutions for achieving the imposed emission standards as they permit low NOx and soot emissions, via lean and highly diluted combustions, thus assuring low combustion temperatures. This requires the creation of numerical tools adapted to these new challenges. This Ph.D presents the development of a new 0D Diesel HCCI combustion model : the dual Combustion Model (dual−CM ). The dual-CM is based on the PCM-FPI approach used in 3D CFD, which allows to predict the characteristics of Auto-Ignition and Heat Release for all Diesel combustion modes. In order to adapt the PCM-FPI approach to a 0D formalism, a good description of the in-cylinder mixture is fundamental. Consequently, adapted models for liquid fuel evaporation, mixing zone formation and mixture fraction variance, which allow to have a detailed description of the local thermochemical properties of the mixture even in configurations adopting multiple injection strategies, are proposed. The results of the 0D model are compared in an initial step to the 3D CFD results. Then, the dual-CM is validated against a large experimental database; considering the good agreement with the experiments and low CPU costs, the presented approach is shown to be promising for global engine system simulations. Finally, the limits of the hypotheses made in the dual-CM are investigated and perspectives for future developments are proposed.
45

Identification des mécanismes physico-chimiques impliqués dans le post-traitement plasma des gaz d'échappement et études comparatives des différentes technologies plasma / Identification of physico-chemical mechanisms involved in plasma exhaust after-treatment and comparative studies of various plasma technologies

Leray, Alexis 18 December 2012 (has links)
Le nouveau mode de combustion HCCI est adapté pour réduire les émissions d’oxydes d’azote et de particules fines issues de moteurs Diesel afin de respecter les futures normes d’émission Euro de plus en plus drastiques. Ce type de combustion se traduit par l’augmentation des émissions de monoxyde de carbone et des hydrocarbures et par une faible température des gaz d’échappement retardant ainsi leur conversion par le catalyseur d’oxydation Diesel (DOC). C’est dans ce contexte environnemental et économique que le couplage plasma-catalyseur apparait comme une solution intéressante afin d’améliorer l’efficacité du traitement des gaz d’échappement Diesel. Cette thèse est dédiée à l’étude du couplage d’un plasma non-thermique de type décharge à barrière diélectrique (DBD) et d’un catalyseur d’oxydation Diesel (Pt-Pd/Al2O3) pour le traitement de mélanges gazeux représentatifs d’un échappement de moteur Diesel HCCI (O2-NO-H2O-CO-CO2-CH4-C3H6- C7H8-C10H22-N2). Les expériences avec un réacteur plasma pilote ont été menées sur deux bancs expérimentaux : le premier à l’échelle laboratoire en vue de comprendre la physico-chimie impliquant le plasma et le catalyseur avec une attention particulière pour les sous-produits de réaction, et le second à l’échelle industriel afin de déterminer l’efficacité et la faisabilité d’un tel couplage dans les conditions de débit et de température les plus proches possibles de celles rencontrées en sortie moteur véhicule. L’étude menée en fonction de la puissance injectée dans le milieu, la VVH, la température des gaz, ainsi que la nature du cycle de roulage a permis de montrer l’efficacité du plasma pour abaisser de façon significative la température d’activation du DOC pour l’oxydation de CO et des hydrocarbures. Aussi, la présence du plasma en amont du DOC a permis, sur un cycle NEDC simulé, une réduction de 68% et 42% des masses de CO et des hydrocarbures émis en accord avec la norme Euro6 (2014). L’efficacité du plasma pour l’oxydation des hydrocarbures et de NO à basse température dans ces conditions de débits élevés (jusqu’à 900 Lmin−1 sur le cycle NEDC) a été confirmée et les principaux produits de réaction identifiés et quantifiés. / The new HCCI combustion mode is well adapted to improve nitrogen oxide and particulate matter reduction from Diesel engine in order to meet future emission regulations adopted in the Euro zone. However, HCCI engines emit relatively high amounts of unburned hydrocarbons and carbon monoxide due to lower engine exhaust temperature increasing the catalyst light-off time and decreasing the average efficiency of the Diesel oxidation catalyst (DOC). In this environmental and economic context, the combination of plasma with DOC has been considered especially for intermittent use during the cold start. The thesis presents the combination of nonthermal plasma upstream Diesel oxidation catalyst (Pt-Pd/Al2O3) applied to the treatment of simulating Diesel HCCI exhaust gas (O2-NO-H2O-CO-CO2-CH4-C3H6-C7H8-C10H22-N2). The studies were conducted at atmospheric pressure with a pilot-scale dielectric barrier discharge reactor (DBD) on two experimental devices. The first is a laboratory scale set-up (low flow rate : 20 Lmin−1) used to understand the physico-chemical involving the plasma and the catalyst by focusing on the by-products reactions. The second is an industrial scale (gas flow rate up to 260 Lmin−1) used to study the feasibility and the efficiency of the plasma-DOC system under conditions similar to those encountered in Diesel exhaust engine. The effects of the plasma, the DOC and the plasma-DOC systems on the exhaust gas have been investigated under various conditions. The main contribution of the plasma was to give a « thermal » and a chemical « push » to the DOC resulting in the decrease of light-off temperature for CO and HC oxidation. These improvements were shown to depend on the treatment conditions (injected energy i.e. energy density, space velocity, gas temperature and nature of the driving cycle). It is shown that for a simulated European Driving Cycle (NEDC), the combination of plasma upstream DOC reduces the cumulative mass of CO and hydrocarbons by about 68% and 42%, respectively, in accordance with the Euro 6 standard (2014). The efficiency of plasma for hydrocarbons and NO oxidation at low temperature in high flow conditions (up to 900 Lmin−1 on the NEDC) has been confirmed and the main reaction products identified and quantified.
46

Étude cinétique de la combustion en flamme prémélangée de molécules modèles présentes dans les gazoles / Kinetic combustion studies of surrogate diesel fuel molecules in premixed flames

Pousse, Émir 08 January 2009 (has links)
Le moteur HCCI pourrait être une alternative intéressante aux procédés de combustion conventionnels. Néanmoins, le contrôle de la combustion reste difficile dans ce moteur car, contrairement au moteur essence et Diesel, celui-ci est directement contrôlé par la chimie d’oxydation du combustible. Une connaissance très précise des modèles cinétiques détaillés de l’oxydation du carburant est donc indispensable pour pouvoir contrôler ce mode de combustion. L’objectif de cette thèse était de développer et valider expérimentalement des modèles cinétiques d’oxydation à haute température de 3 molécules modèles du gazole en utilisant un brûleur à flamme plate laminaire comme dispositif expérimental. Cette étude présente de nouveaux résultats expérimentaux obtenus sur une flamme laminaire pauvre pré mélangée de méthane ensemencée respectivement avec du n butylbenzène, du n propylcyclohexane et de l’indane. Un modèle cinétique d’oxydation a été développé et validé à haute température pour le n butylbenzène et un autre a été validé en flamme pour le n propylcyclohexane. Dans l’ensemble, ces modèles ont permis de simuler correctement les profils de la plupart des produits mesurés en flamme. Par ailleurs, un modèle cinétique qualitatif d’oxydation pour l’indane a été proposé / The HCCI engine could be an interesting alternative to conventional combustion processes. However, the control of the combustion remains difficult in this engine because, unlike the gasoline and diesel engine, it is directly related to the chemical oxidation of fuel. The development of accurate detailed kinetic models of the oxidation of fuel is therefore essential to control this mode of combustion. The aim of this PhD was to develop and experimentally validate high temperature kinetic oxidation models for 3 molecules representative of diesel fuel by using a flat flame burner experimental device. This study presents new experimental results obtained in a lean laminar premixed methane flame seeded respectively with n butylbenzene, n propylcyclohexane and indane. A kinetic oxidation model was developed and validated at high temperature for n-butylbenzene and another one was validated in flame for n propylcyclohexane. Overall, the models correctly simulated the profiles of most products measured in the flames. Moreover, a qualitative kinetic model for the oxidation of indane has been proposed
47

Lagrangian CFD Modeling of Impinging Diesel Sprays for DI HCCI

Strålin, Per January 2007 (has links)
The homogeneous charge compression ignition (HCCI) concept has been acknowledged as a potential combustion concept for engines, due to low NOx and soot emissions and high efficiency, especially at part-load. Early direct-injection (DI) during the compression stroke is an option when Diesel fuel is used in HCCI. This implies that the risk for wall impingement increases, due to the decreasing in-cylinder density. The fuel sprays has to be well dispersed in order to avoid wall impingement. Specially designed impinging nozzles providing a collision of the Diesel sprays in the vicinity of the orifice exits have experimentally been verified to yield well dispersed sprays and the desired benefits of HCCI under various conditions. The purpose of this work is to use Computational Fluid Dynamics (CFD) as a tool to simulate and evaluate non-impinging and impinging nozzles with respect to mixture formation in direct-injected HCCI. Three different nozzles are considered: one non-impinging and two impinging nozzles with 30 and 60 degree collision angle respectively. Lagrangian CFD simulations of impinging sprays using the traditional collision model of O’Rourke is not sufficient in order obtain the correct spray properties of impinging sprays. This work proposes an enhanced collision model, which is an extension of the O’Rourke model with respect to collision frequency, post collisional velocities and collision induced break-up. The enhanced model is referred to as the EORIS model (Enhanced O’Rourke model for Impinging Sprays). The initial drop size distribution at orifice and break-up time constant of the standard Wave model is calibrated and calculated wall impingement (piston and liner) is compared with combustion efficiency, smoke, HC and CO emissions as a function of injection timing. A set of model parameters were selected for further evaluation. These model parameters and the EORIS collision model were applied to non-impinging and impinging nozzles under low- and high load conditions. The EORIS model and the selected model parameters are able to predict wall impingement in agreement with experimental measurements of combustion efficiency and smoke emissions under low- and high load conditions for the investigated nozzles. A benefit is that one set of model parameters can be used to predict mixture formation, and there is no need for additional model calibration when, for instance, the injection timing or nozzle geometry is changed. In general, experiments and simulations indicate that impinging nozzles are recommended for early injection timing in the compression stroke. This is due to the shorter penetration which leads to a reduced risk for wall impingement. The non-impinging nozzles are, however, beneficial for later injection timing in the compression stroke. During these injection conditions the impinging nozzles have a more stratified charge and under some conditions poor mixture quality is achieved. / HCCI-konceptet (Homogeneous Charge Compression Ignition) är en tänkbar förbränningsprincip för att uppnå låga NOx och sotemissioner, speciellt under låglast förhållanden. Då Diesel används som bränsle är tidig direktinsprutning under kompressionsslaget en tänkbar strategi för att åstadkomma gynnsamma HCCI-förhållanden. Den tidiga direktinsprutningen medför däremot att risken för väggvätning ökar, på grund av den minskade densiteten i cylindern. Detta ställer krav på bränslesprejen som måste vara väl fördelad i cylindern för att undvika väggvätning. Specialkonstruerade spridarspetsar som skapar kollision av sprejerna nära hålmynningen, så kallade kolliderande sprejer, har experimentellt påvisats vara fördelaktiga för HCCI förbränning, tack vare kortare sprejpenetration och voluminös sprej. Syftet med detta arbete är att använda CFD (Computational FluidDynamics) som ett verktyg för att simulera och evaluera ickekolliderande och kolliderande sprejer med avseende på blandningsbildning under direktinsprutade HCCI förhållanden. Tre olika spridarspetsar har undersökts: en icke-kolliderande och två kolliderande med kollisionsvinkel 30 och 60 grader. CFD-simuleringar av kolliderande sprejer med Lagrangiansk modelleringsteknik och O’Rourkes traditionella kollisionsmodell har visat sig vara otillräcklig för att uppnå korrekta sprejegenskaper. Den här avhandlingen presenterar en förbättrad kollisionsmodell baserad på O’Rourkes ursprungliga kollisionsmodell med avseende på kollisionsfrekvens, dropphastighet efter kollision och kollisionsviinducerad break-up. Den förbättrade modellen kallas EORIS (Enhanced O’Rourke model for Impinging Sprays). Den initiala droppfördelningen vid spridarspetsens hålmynning och Wave-modellens tidskonstant för break-up har kalibrerats och beräknad väggvätning (kolv och foder) har jämförts med förbränningsverkningsgrad, rök, HC och CO-emissioner som funktion av insprutningstidpunkt. De valda modellparametrarna och EORIS-modellen tillämpades för att evaluera blandningsbildningen på kolliderande och icke-kolliderande spridarspetsar under låg- och höglast-förhållanden. EORIS-modellen och de utvalda modellparametrarna kan predikteraväggvätning i överensstämmelse med uppmätt förbränningsverkningsgrad och rökemissioner under låglast- och höglastförhållanden för de undersökta spridarspetsarna. En fördel är att de utvalda modellparametrarna kan prediktera blandningsbildningen och det finns inget behov att justera modellparametrarna då t.ex. insprutningstidpunkten eller spridarspetsgeometrin ändras. Generellt påvisar såväl experiment som simuleringar att de kolliderande sprejerna är lämpliga för tidig direktinsprutning underkompressionsslaget. Det är på grund av kort sprejpenetration som reducerar risken för väggvätning. De icke-kolliderande sprejerna är dock lämpliga för sen direktinsprutning under kompressionsslaget. Under dessa förhållanden har de kolliderande sprejerna en mer stratifierad blandning och under vissa förhållanden uppnås då en ofördelaktig blandningskvalitet. / QC 20100819
48

Advancing the Limits of Dual Fuel Combustion

Königsson, Fredrik January 2012 (has links)
There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NOx and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of diesel flow through the nozzle is largely removed. Through investigation and modeling it is shown that the cooling effect of the diesel fuel occurs as the fuel resides injector between injections and not during the actual injection event. For this reason; fuel residing close to the tip absorbs more heat and as a result the dependence of tip temperature on diesel substitution rate is highly non-linear. The problem can be reduced greatly by improved cooling around the diesel injector. Knock and preignitions are limiting the performance of the engine and the behavior of each and how they are affected by gas quality needs to be determined. Based on experiences from this project where pure methane has been used as fuel; preignitions impose a stricter limit on engine operation than knock. / QC 20120626 / Diesel Dual Fuel
49

COMPUTATIONAL INVESTIGATION OF ROTARY ENGINE HOMOGENEOUS CHARGE COMPRESSION IGNITION FEASIBILITY

Resor, Michael Irvin January 2014 (has links)
No description available.
50

火花点火機関における誘電体バリア放電を用いた着火性改善に関する研究

井上, 貴裕 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24006号 / エネ博第442号 / 新制||エネ||83(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー変換科学専攻 / (主査)教授 川那辺 洋, 准教授 林 潤, 教授 今谷 勝次 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM

Page generated in 0.0343 seconds