11 |
Porovnání CMT TWIN s ostatními MIG/MAG procesy / Comparison of CMT TWIN with other MIG/MAG processesJiskra, Milan January 2014 (has links)
The development of welding technology is constantly going forward mainly due to the reduction of production costs and the costs of additional straightening of weldments due to the welding distortion. Therefore, the leading producers of welding machine are coming with new methods and technologies. One of the innovations is also the tandem technology CMT Twin from the company Fronius. The experiment carried out in the diploma thesis confirmed that this is a very cost effective process. The CMT Twin is from the point of view of production costs of the weld cheaper variant and bring less heat into the material compared with conventional welding. Application equipment CMT Twin requires industrial robot, so the method is predestined for the series up to mass production. The CMT Twin finds application, for example in the automotive and shipbuilding industry.
|
12 |
Control of Post-Weld Fracture Toughness in Friction Stir Processed X-80 HSLA SteelCrook, Nolan Tracy 27 July 2021 (has links)
The present study investigates the fracture toughness of FSW X-80 HSLA steel welds. Weld cooling rate and peak temperature were varied among welds; indirectly manipulated through FSW travel speed, rpm, and weld preheat. Fracture toughness was tested according to ASTM 1820 standard along the weld centerline using surface-notched SEB specimen cooled to -40 °C. This study resulted in a reliable, repeatable process for generating friction stir welds with CTOD’s consistently above that of the original base metal. CTOD and microstructure of friction stir welds can be selected by controlling weld cooling rate and peak temperature. Material properties and microstructure similar to the original base metal can be recreated throughout the weld stir zone. CTOD of FSW X80 has a strong inverse linear correlation with post-weld cooling rate.
|
13 |
A Torque Based Power Input Model for Friction Stir WeldingPew, Jefferson W. 07 December 2006 (has links) (PDF)
For decades models have been developed for predicting the size of the weld nugget and heat affected zones in fusion welded structures. The basis for these models is the welding heat input, which is fairly well understood for most arc welding processes. However, this traditional approach is not as straightforward for Friction Stir Welding (FSW). To date, there is no definitive relationship to quantify the heat input for FSW. An important step to establish a heat input model is to identify how FSW process parameters affect weld power. This study details the relationship between FSW process parameters and torque for three different aluminum alloys: 7075, 5083 and 2024. A quantitative weld power and heat input model is created from the torque input. The heat input model shows that decreasing the spindle speed or increasing the feed rate significantly decreases the heat input at low feed rates. At high feed rates, feed rate and spindle speed have little effect on the heat input. Process parameter versus heat input trends are verified by measurements of the weld heat affected zones. In addition, this study outlines and validates the use of a variable spindle speed test for determining torque over a broad range of parameters. The variable spindle speed test provided significant improvements over previous methods of determining torque as this new method enabled the torque to be modeled over a broad range of parameters using a minimum number of welds. The methods described in this study can be easily used to develop torque models for different alloys and materials.
|
14 |
Assessing the effects of GMAW-pulse parameters on arc power and weld heat inputJoseph, Andrew Paul January 2001 (has links)
No description available.
|
15 |
Corrosion Resistant Weld Overlays for Pipelines, Oil and Gas, and Petrochemical InstallationsBabyak, Timothy Olegovich January 2021 (has links)
No description available.
|
16 |
Analysis and Characterization of Residual Stresses in Pipe and Vessel WeldsSong, Shaopin 15 December 2012 (has links)
This research sought to establish residual stress distribution characteristics in typical pipe and vessel welds by carrying out a comprehensive parametric study using an advanced sequentially coupled thermo-mechanical finite element procedure. The parametric study covered vessel and pipe components with a ranging radius to thickness ratio from r/t=2 to 100, for thickness ranging from t=1/4” to 10”. Component materials varied from low carbon steel to high alloy steels, such as stainless steel and titanium alloy. Furthermore, a structural mechanics based framework is proposed to generalize through-thickness residual stress distributions for a broad spectrum of joint geometry and welding conditions. The results of this study have been shown to provide both a significantly improved understanding of important parameters governing residual stresses in pipe and vessel welds, as well as a unified scheme for achieving consistent residual stress prescriptions for supporting fitness-for-service assessments of engineering structures. Specific contributions of this investigation may be summarized as follows:
(a) A welding heating input characterization procedure has been developed and validated to relate prescribed temperature thermal modeling procedure to conventional linear input definition. With this development, a large number of parametric analyses can be carried in a cost-effective manner without relying on the heat flux based weld pool model that can be exhaustive and time-consuming.
(b) A set of governing parameters controlling important residual stress distribution characteristics regardless of joint types, materials, and welding procedures have been identified. These are characteristic heat input intensity and radius over thickness ratio.
(c) A shell theory based residual stress estimation scheme has been developed to interrelate all parametric analysis results for circumferential girth welds, which can also be used to estimate residual stress distributions in both through-thickness and at any distance away from the weld, for cases that are not covered in the parametric study.
(d) In a similar manner, a curve bar theory based residual stress estimation scheme has also been developed for longitudinal seam welds.
These developments can significantly advance the residual stress profile prescription methods stipulated in the current national and international FFS Codes and Standards such as 2007 API 579 RP/ASME FFS-1 and BS 7910: 2011.
|
17 |
Efeitos da energia de soldagem e consumíveis sobre a resistência à flexão de juntas "T" soldadas em perfis tubularesDalcin, Rafael Luciano January 2016 (has links)
O uso de aços de alta resistência mecânica vem crescendo significativamente, principalmente em situações onde é necessário um material com grande limite elástico para a conformação a frio e boa soldabilidade. Nessas aplicações, a elevada resistência reduz o peso e/ou aumenta a carga que pode ser suportada pelas estruturas produzidas. A introdução dos aços fabricados por processamento termomecânico controlado (TMCP) demandou maiores propriedades mecânicas e metalúrgicas das juntas soldadas sobre eles produzidas. Em função desses fatores, a energia de soldagem é estritamente limitada, e para evitar uma eventual redução da resistência mecânica da zona afetada pelo calor (ZAC), é necessário testar os procedimentos de soldagem próximos daqueles que serão usados na estrutura real. O objetivo deste estudo é obter dados detalhados referentes à eficiência mecânica de juntas soldadas por MAG e com diferentes energias, sobre perfis tubulares quadrados em aço TMCP, formando um conjunto soldado coluna/viga. Seis energias de soldagem e dois metais de adição foram utilizados (AWS ER80S-G e AWS ER120S-G), o primeiro somente com as soldas posicionadas em todo o contorno do perfil, e o segundo com soldas em todo o contorno, transversais e longitudinais em relação à direção de aplicação da carga. Vinte e quatro estruturas foram soldadas, instrumentadas e submetidas à flexão. Comparando as juntas soldadas com mesma energia, observou-se maior resistência à flexão nas soldas longitudinais e em todo contorno, e valores inferiores para soldas transversais. Além disso, pôde ser constatado que 1,2 kJ/mm de energia de soldagem deu os melhores resultados para as juntas soldadas com ambos os consumíveis, uma vez que até esse valor a área da seção resistente das juntas soldadas aumentou significativamente. O uso de energias mais elevadas não foi eficaz para aumentar a resistência à flexão das juntas soldadas ora investigadas, pois o efeito da energia de soldagem sobre a redução da dureza e, consequentemente, resistência mecânica da ZAC, aparentemente se sobrepõe ao aumento da área da seção resistente da junta soldada. / The use of high strength steels is growing significantly, especially in situations where it is necessary a material with high strength for cold forming and good weldability. In these applications, the high strength decreases the weight and/or increases the load that can be supported by the structures produced. The introduction of steels made by thermomechanical controlled processing (TMCP) demanded higher mechanical and metallurgical properties of the welded joints produced on them. Given these factors, the heat input is strictly limited, and to avoid any reduction in the mechanical strength of the heat affected zone (HAZ), it is required to test welding procedures close to those that will be used in the actual structure. The aim of this study is to obtain detailed data on the mechanical efficiency of welded joints with GMAW and different heat inputs, on square tubular profiles in TMCP steel, disposed as a column/beam weldment. Six different heat inputs and two filler metals were used (AWS ER80S-G and AWS ER120S-G), the first one with the welds located around the profile contour, and the second one with welds all around the profile, transverse and longitudinal to the axis of the weld bead. Twenty-four welded structures were instrumented and subjected to bending. Comparing the welded joints with the same heat input, it can be noticed that higher bending strength is obtained from all-around contour and longitudinal welds, and lower values for the transverse welds. Moreover, it could be seen of 1.2 kJ/mm heat input gave optimum results to the welded joints with both consumables, since up to this value the area of the resistant section of welded joints increased significantly. The use of higher heat inputs was not effective to increase the bending strength of the welded joints herein investigated, since the effect of heat input on the reduction of the hardness and, consequently, mechanical strength of the HAZ, apparently overrides the increase in the area of the resistant section of the welded joint.
|
18 |
Efeitos da energia de soldagem e consumíveis sobre a resistência à flexão de juntas "T" soldadas em perfis tubularesDalcin, Rafael Luciano January 2016 (has links)
O uso de aços de alta resistência mecânica vem crescendo significativamente, principalmente em situações onde é necessário um material com grande limite elástico para a conformação a frio e boa soldabilidade. Nessas aplicações, a elevada resistência reduz o peso e/ou aumenta a carga que pode ser suportada pelas estruturas produzidas. A introdução dos aços fabricados por processamento termomecânico controlado (TMCP) demandou maiores propriedades mecânicas e metalúrgicas das juntas soldadas sobre eles produzidas. Em função desses fatores, a energia de soldagem é estritamente limitada, e para evitar uma eventual redução da resistência mecânica da zona afetada pelo calor (ZAC), é necessário testar os procedimentos de soldagem próximos daqueles que serão usados na estrutura real. O objetivo deste estudo é obter dados detalhados referentes à eficiência mecânica de juntas soldadas por MAG e com diferentes energias, sobre perfis tubulares quadrados em aço TMCP, formando um conjunto soldado coluna/viga. Seis energias de soldagem e dois metais de adição foram utilizados (AWS ER80S-G e AWS ER120S-G), o primeiro somente com as soldas posicionadas em todo o contorno do perfil, e o segundo com soldas em todo o contorno, transversais e longitudinais em relação à direção de aplicação da carga. Vinte e quatro estruturas foram soldadas, instrumentadas e submetidas à flexão. Comparando as juntas soldadas com mesma energia, observou-se maior resistência à flexão nas soldas longitudinais e em todo contorno, e valores inferiores para soldas transversais. Além disso, pôde ser constatado que 1,2 kJ/mm de energia de soldagem deu os melhores resultados para as juntas soldadas com ambos os consumíveis, uma vez que até esse valor a área da seção resistente das juntas soldadas aumentou significativamente. O uso de energias mais elevadas não foi eficaz para aumentar a resistência à flexão das juntas soldadas ora investigadas, pois o efeito da energia de soldagem sobre a redução da dureza e, consequentemente, resistência mecânica da ZAC, aparentemente se sobrepõe ao aumento da área da seção resistente da junta soldada. / The use of high strength steels is growing significantly, especially in situations where it is necessary a material with high strength for cold forming and good weldability. In these applications, the high strength decreases the weight and/or increases the load that can be supported by the structures produced. The introduction of steels made by thermomechanical controlled processing (TMCP) demanded higher mechanical and metallurgical properties of the welded joints produced on them. Given these factors, the heat input is strictly limited, and to avoid any reduction in the mechanical strength of the heat affected zone (HAZ), it is required to test welding procedures close to those that will be used in the actual structure. The aim of this study is to obtain detailed data on the mechanical efficiency of welded joints with GMAW and different heat inputs, on square tubular profiles in TMCP steel, disposed as a column/beam weldment. Six different heat inputs and two filler metals were used (AWS ER80S-G and AWS ER120S-G), the first one with the welds located around the profile contour, and the second one with welds all around the profile, transverse and longitudinal to the axis of the weld bead. Twenty-four welded structures were instrumented and subjected to bending. Comparing the welded joints with the same heat input, it can be noticed that higher bending strength is obtained from all-around contour and longitudinal welds, and lower values for the transverse welds. Moreover, it could be seen of 1.2 kJ/mm heat input gave optimum results to the welded joints with both consumables, since up to this value the area of the resistant section of welded joints increased significantly. The use of higher heat inputs was not effective to increase the bending strength of the welded joints herein investigated, since the effect of heat input on the reduction of the hardness and, consequently, mechanical strength of the HAZ, apparently overrides the increase in the area of the resistant section of the welded joint.
|
19 |
Efeitos da energia de soldagem e consumíveis sobre a resistência à flexão de juntas "T" soldadas em perfis tubularesDalcin, Rafael Luciano January 2016 (has links)
O uso de aços de alta resistência mecânica vem crescendo significativamente, principalmente em situações onde é necessário um material com grande limite elástico para a conformação a frio e boa soldabilidade. Nessas aplicações, a elevada resistência reduz o peso e/ou aumenta a carga que pode ser suportada pelas estruturas produzidas. A introdução dos aços fabricados por processamento termomecânico controlado (TMCP) demandou maiores propriedades mecânicas e metalúrgicas das juntas soldadas sobre eles produzidas. Em função desses fatores, a energia de soldagem é estritamente limitada, e para evitar uma eventual redução da resistência mecânica da zona afetada pelo calor (ZAC), é necessário testar os procedimentos de soldagem próximos daqueles que serão usados na estrutura real. O objetivo deste estudo é obter dados detalhados referentes à eficiência mecânica de juntas soldadas por MAG e com diferentes energias, sobre perfis tubulares quadrados em aço TMCP, formando um conjunto soldado coluna/viga. Seis energias de soldagem e dois metais de adição foram utilizados (AWS ER80S-G e AWS ER120S-G), o primeiro somente com as soldas posicionadas em todo o contorno do perfil, e o segundo com soldas em todo o contorno, transversais e longitudinais em relação à direção de aplicação da carga. Vinte e quatro estruturas foram soldadas, instrumentadas e submetidas à flexão. Comparando as juntas soldadas com mesma energia, observou-se maior resistência à flexão nas soldas longitudinais e em todo contorno, e valores inferiores para soldas transversais. Além disso, pôde ser constatado que 1,2 kJ/mm de energia de soldagem deu os melhores resultados para as juntas soldadas com ambos os consumíveis, uma vez que até esse valor a área da seção resistente das juntas soldadas aumentou significativamente. O uso de energias mais elevadas não foi eficaz para aumentar a resistência à flexão das juntas soldadas ora investigadas, pois o efeito da energia de soldagem sobre a redução da dureza e, consequentemente, resistência mecânica da ZAC, aparentemente se sobrepõe ao aumento da área da seção resistente da junta soldada. / The use of high strength steels is growing significantly, especially in situations where it is necessary a material with high strength for cold forming and good weldability. In these applications, the high strength decreases the weight and/or increases the load that can be supported by the structures produced. The introduction of steels made by thermomechanical controlled processing (TMCP) demanded higher mechanical and metallurgical properties of the welded joints produced on them. Given these factors, the heat input is strictly limited, and to avoid any reduction in the mechanical strength of the heat affected zone (HAZ), it is required to test welding procedures close to those that will be used in the actual structure. The aim of this study is to obtain detailed data on the mechanical efficiency of welded joints with GMAW and different heat inputs, on square tubular profiles in TMCP steel, disposed as a column/beam weldment. Six different heat inputs and two filler metals were used (AWS ER80S-G and AWS ER120S-G), the first one with the welds located around the profile contour, and the second one with welds all around the profile, transverse and longitudinal to the axis of the weld bead. Twenty-four welded structures were instrumented and subjected to bending. Comparing the welded joints with the same heat input, it can be noticed that higher bending strength is obtained from all-around contour and longitudinal welds, and lower values for the transverse welds. Moreover, it could be seen of 1.2 kJ/mm heat input gave optimum results to the welded joints with both consumables, since up to this value the area of the resistant section of welded joints increased significantly. The use of higher heat inputs was not effective to increase the bending strength of the welded joints herein investigated, since the effect of heat input on the reduction of the hardness and, consequently, mechanical strength of the HAZ, apparently overrides the increase in the area of the resistant section of the welded joint.
|
20 |
Experimental and Numerical Investigation of Tool Heating During Friction Stir WeldingCovington, Joshua L. 15 July 2005 (has links) (PDF)
The heat input to the tool has been investigated for friction stir welding (FSW) of aluminum alloy AL 7075-T7351 over a wide range of process operating parameters using a combined experimental/numerical approach. In a statistical Design of Experiments fashion, 54 experimental welds (bead-on-plate) were performed at 27 different parameter combinations. Measured outputs during each of the welds included forces in all three coordinate directions and internal temperature of the rotating tool at three locations near the tool/workpiece interface. The heat input to the tool was also identified for each weld using infrared imaging temperature measurement techniques and the portion of the total mechanical power entering the tool was calculated. These values were subsequently analyzed to identify the effect of process operating parameters. Two-dimensional, axisymmetric numerical heat conduction models of the tool were then produced and the approximate spatial distribution of the heat input to the tool along the tool/workpiece interface was identified. Experimental values for the heat input to the tool ranged from 155 W to 200 W, comprising 2.8% to 5.1% of the total mechanical power. Regression equations developed for the two values show that each is a function of the process operating parameters. Heat conduction models of the tool show that the approximate spatial distribution of the heat input to the tool along the tool/workpiece interface is one where the heat input is distributed non-uniformly along the interface, with 1% entering the tool at the pin, 20% entering at the base of the pin, and the remainder entering the flat portion of the shoulder. This distribution was valid for the majority of process operating parameter combinations tested. The maximum predicted temperature for the simulations occurred in the pin. This result was verified by the experimental tool temperature measurements. Insights gained into the FSW process from the combined experimental/numerical investigation were then discussed.
|
Page generated in 0.024 seconds