• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 34
  • 34
  • 21
  • 14
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxide on corrosion properties

Westin, Elin M. January 2008 (has links)
<p>Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation.</p><p> </p>
32

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.
33

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.
34

Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxides on corrosion properties

Westin, Elin M. January 2008 (has links)
Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation. / QC 20101126

Page generated in 0.0165 seconds