• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 67
  • 42
  • 30
  • 24
  • 8
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 701
  • 137
  • 89
  • 63
  • 50
  • 45
  • 44
  • 41
  • 40
  • 36
  • 35
  • 34
  • 34
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Cluster fusion experiments on the Texas Petawatt Laser

Bang, Woosuk 12 November 2013 (has links)
Interactions between an intense laser pulse and cluster targets are investigated using the recent experimental results of the cluster fusion experiments on the Texas Petawatt Laser (TPW). We achieved about 2x10⁷ DD fusion neutrons per shot on the TPW by optimizing the laser and gas jet parameters. A few different types of cluster targets were used on the TPW including deuterium clusters, deuterated methane clusters, deuterium cluster + helium-3 mixture, and deuterated methane cluster + helium-3 mixture. We designed our own neutron detectors and proton detectors for the measurements of the fusion yields. The calibration method of neutron detectors is described in detail. Through the yield measurements of the 2.45 MeV neutrons from the DD fusion reactions and 14.7 MeV protons from the D-³He fusion reactions in the deuterium-helium-3 mixture target, we successfully measured the ion temperature of the fusion plasma at the time of the fusion reactions. / text
612

New Methods to Create Multielectron Bubbles in Liquid Helium

Fang, Jieping January 2012 (has links)
An equilibrium multielectron bubble (MEB) in liquid helium is a fascinating object with a spherical two-dimensional electron gas on its surface. After it was first observed a few decades ago, a plethora of physical properties of MEBs, for example, a tunable surface electron density, have been predicted. In this thesis, we will discuss two new methods to create MEBs in liquid helium. Before the discussion, the way to generate a large number of electrons in a low temperature system will be discussed, including thermionic emission and field emission in helium. In the first new method to make MEBs, we used a dome-shaped cell filled with superfluid helium in which an MEB was created and confined at the dome. The lifetime of the MEB was substantially longer than the previously reported observations of MEBs. In the second method, MEBs were extracted from the vapor sheath around an electrically heated tungsten filament submerged in liquid helium, either by a high electric field (up to 15 kV/cm) or by a sudden increase of a negative pressure in liquid helium. High-speed photography was used to capture the MEB's motion. A method to determine the number of electrons was developed by monitoring the oscillations of the MEBs. Finally, an electromagnetic trap was designed to localize the MEBs created using the second method, which was important for future studies of the properties of MEBs. / Physics
613

L'Hélium Solide Métastable en Sous-Pression

Souris, Fabien 17 January 2013 (has links) (PDF)
En 1969, il a été suggéré que des lacunes atomiques pourraient former un condensat de Bose dans l'hélium-4 solide, ce qui lui conférerait des propriétés de superfluidité. Ce scénario n'a toujours pas pu être observé, car il semblerait que l'énergie d'activation des lacunes soit trop importante. Toutefois, cette énergie diminue lorsque le volume molaire du solide augmente, mais cette diminution est limitée par la fusion du solide. Le travail présenté dans cette thèse, vise à produire un état d'hélium solide métastable par rapport à la fusion, pour prolonger la diminution de l'énergie d'activation et tendre vers la réalisation du scénario. Pour cela nous avons développé une technique permettant de focaliser une onde ultrasonore dans un monocristal d'hélium pourtant anisotrope. Les oscillations de pression provoquées par l'onde portent transitoirement l'hélium sous sa pression de fusion, qui est d'environ 25 bar. Une mesure interférométrique du champ acoustique émis, faite à travers les accès optiques du cryostat, nous permet de déterminer la pression de l'échantillon métastable produit. Les résultats obtenus montrent qu'il est possible d'obtenir des états métastables décomprimés jusqu'à 21 bar, soit 4,5 bar sous la pression de fusion. Au-delà de cette limite, le cristal subit une instabilité inattendue, bien avant la limite spinodale prédite théoriquement. L'analyse de cette instabilité montre que le phénomène pourrait correspondre à la nucléation de la phase liquide, bien que sa pression d'apparition soit incompatible avec le modèle actuel.
614

Étude du comportement thermique de l’hélium implanté dans le liner molybdène du Réacteur GFR / Study of the thermal behaviour of helium during and after its implantation into the molybdenum liner of the GFR Reactor

Viaud, Christophe 09 April 2009 (has links)
Le liner métallique à confiner le matériau combustible des plaques GenIV doit, pour tenir son rôle, supporter « l'agression » des flux de neutrons rapides et d’impuretés implantées (produits de fission, hélium). Le travail de thèse présenté a contribué à la compréhension des mécanismes de fragilisation dans les métaux sous irradiation : il propose un modèle pour la nucléation et la croissance de bulles de gaz tels que l’hélium. L’approche utilisée couple une démarche de modélisation à une démarche expérimentale. Des mesures de relâchement obtenues par les techniques de spectrométrie de masse (TDS) et d’analyse par la réaction nucléaire (NRA) ainsi que des caractérisations par microscopie électronique en transmission (MET) ont été réalisées. Le développement d’un modèle simplifié de dynamique d’amas a permis d’interpréter le couplage entre la dynamique de relâchement de l’hélium et celle des bulles. Ce modèle a permis d’une part, de simuler les expériences d’implantation/récuit à partir d’un jeu de grandeurs physiques cohérentes avec celle de la littérature, et d’autre part, de mettre en évidence un couplage fort entre les concentrations des espèces libres (atomes d’hélium et lacunes) et la composition moyenne des bulles. Les dynamiques singulières de relâchement du gaz observées expérimentalement ont pu être expliquées par le mûrissement d’une population de bulles, initialement « surpressurisées », qui poursuivent leur croissance en réduisant leur concentration totale et leur pression / The metal liner dedicated to continue the fuel assembly of the Gas Fast Reactor, is intended to resist to a fast neutron flux and the implantation of impurities such as helium and the fission products. This PhD work contributes to the understanding of one of the mechanisms inducing the metal embrittlement under irradiation; it deals with a model that predicts the nucleation and growth of gas bubbles, such as helium, into a metal. The approach of the thesis relies on both theoretical and experimental works. The gas release measurements have been performed with the Nuclear Reaction Analysis (NRA) method and the Thermal Desorption Spectrometry (TDS); the bubbles characterization performed by Transmission Electronic Microscopy (TEM). The development of a simple model for the description of the cluster dynamic (clusters composed by defects and gas atoms) proposes some explanations for the coupling between the dynamics of the helium release and the bubbles evolution. This model enables to simulate the implantation experiments and the following annealing sequences, with a relevant physical dataset and coherent with the literature. Moreover it enhances the strong inference between the species concentration into the bulk (vacancies and helium atoms) and the mean composition of the bubbles. The peculiar dynamics of the gas release observed during the experiments, initially rapid and then significantly reduced , would be due to the ripening of the bubbles, pressurized after the room temperature implantation, which keep on growing and reducing their concentration and internal pressure
615

Beyond the adiabatic model for the elastic scattering of composite nuclei

Summers, Neil Christopher January 2001 (has links)
No description available.
616

Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

Laine, Vivien 21 November 2013 (has links) (PDF)
The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, a highly efficient polarized target is essential. This means high polarization and high relative density of polarized material. This dissertation presents the principles and usage procedures of a Hydrogen Deuteride (HD) target that presents both such characteristics. Although the HD target has been shown to work successfully under a high intensity photon beam, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the HD target was tested for the first time in its "frozen spin" mode under an electron beam during the g14 experiment in the Jefferson Lab's Hall B in 2012. Two methods of polarimetry are also discussed in this dissertation : one with Nuclear Magnetic Resonance of this HD target during the electron beam tests, and another with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.
617

Laminar flame speed and stretch sensitivity of hydrocarbon fuels at high preheat, pressure and vitiation

Kochar, Yash N. 27 August 2014 (has links)
This thesis investigates the laminar flame speed of C₁-C₃ alkanes and their binary mixtures at conditions of interest in natural gas based gas turbines viz. high temperature, pressure and dilution. Laminar flame speed has been found useful not only for validating chemical kinetics mechanisms but also for developing empirical scaling laws for practical combustion systems. The thesis addresses the lack of laminar flame speed data of C₁-C₃ alkanes at preheat (300-650 K), pressure (1-10 atm) and significant oxidizer dilution (15-21 vol% O₂). Over 400 measurements are reported over a wide range of conditions along with comparison to predictions from leading chemical mechanisms. Unstretched flame speed measurements were performed using a modified Bunsen flame technique based on reaction zone area from chemiluminescence imaging, whereas the strain sensitivity measurements were performed using a bluff-body stabilized stagnation flame with high resolution PIV. These measurements are used to: (i) discern the uncertainties associated with the measurements, (ii) understand the effect of fuel mixture and vitiation on flame speed, and (iii) validate the performance of the leading chemical kinetics mechanisms. Extensive testing shows the unstretched flame speed measurements from the modified Bunsen technique are reasonably accurate. Vitiation studies for methane and propane flames at high preheat show the reduction in flame speed results primarily from the thermal effect of the diluent and that the relative change in flame speed from the undiluted mixture is well correlated to the fractional change in the adiabatic flame temperature over a range of conditions. Significant difference in the measured and predicted flame speeds were observed for rich, atmospheric pressure, propane and lean, high pressure, methane/ethane mixtures with dilution. This highlights possible avenues for improvements in the chemical kinetics mechanisms. Systematic errors were also identified in the Bunsen flame measurements at certain conditions, such as for rich flames with dilution, indicating a need for better understanding of the Bunsen flame technique at these conditions. The difference in the measured and predicted flame speed does not show any clear correlation with the flame height or the strain sensitivity of the mixture. Finally previously proposed mixing rules for estimating flame speed of fuel mixtures from pure fuel components are shown to be reasonably accurate over a range of pressure, reactant temperature and dilution conditions.
618

Carbothermal solid state reduction of manganese oxide and ores in different gas atmospheres

Kononov, Ring, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
The aim of the project was to establish rate and mechanisms of solid state reduction of manganese ores. The project studied carbothermal reduction of manganese oxide MnO, two Groote Eylandt (Australian) and Wessels (South African) manganese ores in hydrogen, helium and argon atmospheres at temperatures up to 1400C for MnO and 1200C for manganese ores. Experiments were conducted in the fixed bed reactor with on-line off-gas analysis. The major findings are as follows. ?? Rate and degree of reduction of MnO and ores increased with increasing temperature. ?? Reduction of MnO and manganese ores at temperatures up to 1200C was faster in helium than in argon, and much faster in hydrogen than in helium. The difference in MnO reduction in hydrogen and helium decreased with increasing temperature to 1400C. ?? Addition of up to 7 vol% of carbon monoxide to hydrogen had no effect on MnO reduction at 1200C. ?? In the process of carbothermal reduction of ores in hydrogen at 1200C, silica was reduced. ?? Reduction of both GE ores was slower than of Wessels ore. This was attributed to high content of iron oxide in the Wessels ore. ?? Carbon content in the graphite-ore mixture had a strong effect on phases formed in the process of reduction; thus, in the reduction of Wessels ore with 12-16 wt% C, a-Mn and Mn23C6 were formed; when carbon content was above 20 wt%, oxides were reduced to carbide (Mn,Fe)7C3. ?? Kinetic analysis showed that mass transfer of intermediate CO2 from oxide to graphite in carbothermal reduction in inert atmosphere was a contributing factor in the rate control. ?? High rate of reduction of manganese oxide in hydrogen was attributed to formation of methane which facilitated mass transfer of carbon from graphite to oxide. Hydrogen was also directly involved in reduction of manganese ore reducing iron oxides to metallic iron and higher manganese oxides to MnO. Reduction of Wessels and Groote Eyland Premium Fines ores in the solid state is feasible at temperatures up to 1200C; while temperature for solid state reduction of Groote Eyland Premium Sands is limited by 1100C.
619

Ab Initio investigation of the electronic structure and rovibrational spectroscopy of group-I and II metal hydrides and helides

Page, Alister J. January 2008 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / (**Note: this abstract is a plain text version of the author's abstract, the original of which contains characters and symbols which cannot be accurately represented in this format. The properly formatted abstract can be viewed in the Abstract and Thesis files above.**) The electronic structure and rovibrational spectroscopy of MH2, MHn+2, HMHen+ and MHen+2 (M = Li, Be, Na, Mg, K, Ca; n = 1, 2) have been investigated using correlated ab initio ansatz. In order to determine the efficacy of various electronic structure methods with respect to Group-I and II hydrides and helides, atomic properties of Li, Be,Na, Mg, K and Ca were calculated. Relativistically-corrected UCCSD(T) and ICMRCI(+Q) were deemed to be the most suitable ansatz with respect to both efficiency and accuracy. The lowest 2A1 and 2Σ- states of MH2 were found to be purely repulsive, in agreement with previous predictions. The main factor determining the structure and stability of the excited states of MH2 was the relative orientations and occupations of the valence p atomic orbital of M and the H2 1Ou orbital. The ground states of MHn+2 were found to be the result of the charge-quadrupole interaction between Mn+ and the H2 molecular subunit. The structures of the ground states of HMHe+ were extremely uxional with respect to the central bond angle co-ordinate. The ground state PESs of MHe+2 were also extremely sensitive to the ab initio ansatz by which they are modelled. The respective bonding of the H and He in both HMHe+ and HMHe2+ appeared to be charge-dependent in the case of Be, Mg and Ca. Despite the weak bonding observed for the Group-II hydrohelide and helide monocations, the corresponding dications each exhibit thermodynamically stable equilibria. The solution algorithm of von Nagy-Felsobuki and co-workers was employed in the calculation of vibrational and rovibrational spectra. This algorithm employed an Eckart-Watson Hamiltonian in conjunction with rectilinear normal co-ordinates. Vibrational and rovibrational Hamiltonian matrices were diagonalised using variational methods. This algorithm was extended so that the vibration transition moment integrals, and hence vibrational radiative properties, of linear triatomic molecules could be calculated. A method by which vibration-averaged structures are calculated was also developed and implemented. Analytical potential energy functions (PEFs) and dipole moment functions (DMFs) of (1A1)LiH+2, (1A1)NaH+2, (1A1)BeH2+2,(1A1)MgH2+2, (1Σ+g )BeHe2+2, (2Σ+)HBeHe2+, (1Σ+g )MgHe2+2 and (2Σ+)HMgHe2+ were developed using leastsquare regression techniques in conjunction with discrete ab initio grids. Vibrational structures and spectra of these species were subsequently calculated. In addition, the rovibrational spectra of (1A1)LiH+2, (1A1)NaH+2, (1A1)BeH2+2 and (1A1)MgH2+2 were calculated. For (1A1)LiH+2 and (1A1)LiD+2 , calculated rovibrational transition frequencies for J ≤ 10 and 0 ≤ K ≤ 3 were within ca. 0.1-0.2% of experimental values.
620

Ab Initio investigation of the electronic structure and rovibrational spectroscopy of group-I and II metal hydrides and helides

Page, Alister J. January 2008 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / (**Note: this abstract is a plain text version of the author's abstract, the original of which contains characters and symbols which cannot be accurately represented in this format. The properly formatted abstract can be viewed in the Abstract and Thesis files above.**) The electronic structure and rovibrational spectroscopy of MH2, MHn+2, HMHen+ and MHen+2 (M = Li, Be, Na, Mg, K, Ca; n = 1, 2) have been investigated using correlated ab initio ansatz. In order to determine the efficacy of various electronic structure methods with respect to Group-I and II hydrides and helides, atomic properties of Li, Be,Na, Mg, K and Ca were calculated. Relativistically-corrected UCCSD(T) and ICMRCI(+Q) were deemed to be the most suitable ansatz with respect to both efficiency and accuracy. The lowest 2A1 and 2Σ- states of MH2 were found to be purely repulsive, in agreement with previous predictions. The main factor determining the structure and stability of the excited states of MH2 was the relative orientations and occupations of the valence p atomic orbital of M and the H2 1Ou orbital. The ground states of MHn+2 were found to be the result of the charge-quadrupole interaction between Mn+ and the H2 molecular subunit. The structures of the ground states of HMHe+ were extremely uxional with respect to the central bond angle co-ordinate. The ground state PESs of MHe+2 were also extremely sensitive to the ab initio ansatz by which they are modelled. The respective bonding of the H and He in both HMHe+ and HMHe2+ appeared to be charge-dependent in the case of Be, Mg and Ca. Despite the weak bonding observed for the Group-II hydrohelide and helide monocations, the corresponding dications each exhibit thermodynamically stable equilibria. The solution algorithm of von Nagy-Felsobuki and co-workers was employed in the calculation of vibrational and rovibrational spectra. This algorithm employed an Eckart-Watson Hamiltonian in conjunction with rectilinear normal co-ordinates. Vibrational and rovibrational Hamiltonian matrices were diagonalised using variational methods. This algorithm was extended so that the vibration transition moment integrals, and hence vibrational radiative properties, of linear triatomic molecules could be calculated. A method by which vibration-averaged structures are calculated was also developed and implemented. Analytical potential energy functions (PEFs) and dipole moment functions (DMFs) of (1A1)LiH+2, (1A1)NaH+2, (1A1)BeH2+2,(1A1)MgH2+2, (1Σ+g )BeHe2+2, (2Σ+)HBeHe2+, (1Σ+g )MgHe2+2 and (2Σ+)HMgHe2+ were developed using leastsquare regression techniques in conjunction with discrete ab initio grids. Vibrational structures and spectra of these species were subsequently calculated. In addition, the rovibrational spectra of (1A1)LiH+2, (1A1)NaH+2, (1A1)BeH2+2 and (1A1)MgH2+2 were calculated. For (1A1)LiH+2 and (1A1)LiD+2 , calculated rovibrational transition frequencies for J ≤ 10 and 0 ≤ K ≤ 3 were within ca. 0.1-0.2% of experimental values.

Page generated in 0.0176 seconds