211 |
Chemical phases in the Y-Ba-Cu-O system identified by TDPACF��ssel, Alexander 14 July 1993 (has links)
Graduation date: 1994
|
212 |
Coexistance of spin and charge density fluctuations in strongly correlated systemsHan, Fuxiang 19 January 1993 (has links)
Spin and charge density fluctuations are important excitations in the strongly correlated systems, especially in the recently discovered high temperature superconductors. Several different theories on high temperature superconductors have been proposed based on spin fluctuations. However, experiments have also shown the existence of strong charge fluctuations. It is, therefore, desirable to investigate the physical consequences of the coexistence of strong spin and charge density fluctuations. As a first step toward a full understanding of both spin and charge excitations, a self-consistent theory is established. In this self-consistent theory, there are three important quantities, the spin susceptibility, the charge susceptibility, and the phonon Green's function. These three quantities are coupled together by the electron-phonon and phonon-spin fluctuation interactions. The phonon-spin fluctuation interaction is derived by making use of the spin-orbital coupling.
For a strongly correlated system, the spin and charge density excitations have to be considered self-consistently. They are intimately related.
The effects of antiparamagnons on phonons are also investigated. Antiparamagnons can have dramatic effects on phononic properties. It is found that new modes are formed in the presence of antiferromagnetic spin fluctuations.
The de Haas-van Alphen effect in marginal and nearly antiferromagnetic Fermi liquids is studied. It is found that the de Haas-van Alphen frequency is unaffected by the anomalous response functions of the marginal and nearly antiferromagnetic Fermi liquids due to the absence of real parts of self-energies on the imaginary frequency axis. / Graduation date: 1993
|
213 |
The chemical reactor for the decomposition of sulphuric acid for the hybrid sulphur process / by M.D. CoetzeeCoetzee, Martin-David January 2008 (has links)
The utilisation of alternate sources of energy has reached critical levels due to the constantly growing demand for energy and the diminishing of fossil fuels. The production of hydrogen through the Hybrid Sulphur process is a possible alternative that may contribute towards alleviating the pressure on the world's energy resources. The two-step thermochemical cycle for decomposing water into hydrogen and oxygen offers the potential to obtain acceptable thermal efficiencies, while still using common and inexpensive chemicals. The process mainly makes use of two unit process operations: an electrolyser and a chemical decomposition reactor. This research project focuses on the concept design of the decomposition reactor operated adiabatically as a multi-stage reactor system with inter-stage heating, in order to simplify the reactor design. This approach allows for the independent evaluation of the reaction kinetics and the heat transfer mechanism. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
|
214 |
Catalytic Properties of Protective Metal-OxidesHörnlund, Erik January 2003 (has links)
No description available.
|
215 |
A Parallel Implicit Adaptive-mesh-refinement Scheme for Hypersonic Flows with an Equilibrium High-temperature Equation of StateWood, Alistair Henry Cameron 30 July 2008 (has links)
A parallel implicit adaptive-mesh-refinement scheme is proposed for the solution of the Navier-Stokes equations as applied to two-dimensional steady-state hypersonic laminar flows in conjunction with an equilibrium high-temperature equation of state. A finite-volume discretization is applied to the governing equations. Limited piecewise-linear solution reconstruction and Riemann solvers (Roe and HLLE, both modified for a general equation of state) are used to evaluate the inviscid fluxes. The gradients in the viscous fluxes are calculated using diamond-path reconstruction. The system of non-linear algebraic equations resulting from the finite-volume discretization are solved using an inexact Newton method with GMRES to solve the update step of the Newton method. GMRES is preconditioned with Schwarz preconditioning with local block-fill incomplete lower-upper factorization. Multigrid and pseudo-transient continuation are used for startup. Numerical results, including flows at Mach numbers of 7.0, are discussed and demonstrate the validity and efficiency of the scheme.
|
216 |
A Parallel Implicit Adaptive-mesh-refinement Scheme for Hypersonic Flows with an Equilibrium High-temperature Equation of StateWood, Alistair Henry Cameron 30 July 2008 (has links)
A parallel implicit adaptive-mesh-refinement scheme is proposed for the solution of the Navier-Stokes equations as applied to two-dimensional steady-state hypersonic laminar flows in conjunction with an equilibrium high-temperature equation of state. A finite-volume discretization is applied to the governing equations. Limited piecewise-linear solution reconstruction and Riemann solvers (Roe and HLLE, both modified for a general equation of state) are used to evaluate the inviscid fluxes. The gradients in the viscous fluxes are calculated using diamond-path reconstruction. The system of non-linear algebraic equations resulting from the finite-volume discretization are solved using an inexact Newton method with GMRES to solve the update step of the Newton method. GMRES is preconditioned with Schwarz preconditioning with local block-fill incomplete lower-upper factorization. Multigrid and pseudo-transient continuation are used for startup. Numerical results, including flows at Mach numbers of 7.0, are discussed and demonstrate the validity and efficiency of the scheme.
|
217 |
Generating performance of limiting impedance in flat type of fault current limiter with high Tc superconducting plateMatsumura, Toshiro, Sugimura, Mitsuhiro, Yokomizu, Yasunobu, Shimizu, Hirotaka, Shibuya, Masatoyo, Ichikawa, Michiharu, Kado, Hiroyuki 06 1900 (has links)
No description available.
|
218 |
Performances of small fault current limiting breaker model with high Tc SuperconductorMatsumura, Toshiro, Aritake, Tomohiro, Yokomizu, Yasunobu, Shimizu, Hirotaka, Murayama, Norimitsu 06 1900 (has links)
No description available.
|
219 |
Operation of SiGe BiCMOS Technology Under Extreme EnvironmentsChen, Tianbing 28 November 2005 (has links)
Operation of SiGe BiCMOS Technology Under Extreme Environments
Tianbing Chen
96 pages
Directed by Dr. John D. Cressler
"Extreme environment electronics" represents an important niche market and spans the operation of electronic components in surroundings lying outside the domain of conventional commercial, or even military specifications. Such extreme environments would include, for instance, operation to very low temperatures (e.g., to 77 K or even 4.2 K), operation to very high temperatures (e.g., to 200 C or even 300 C), and operation in a radiation-rich environment (e.g., space).
The suitability of SiGe BiCMOS technology for extreme environment electronics applications is assessed in this work. The suitability of SiGe HBTs for use in high-temperature electronics applications is first investigated. SiGe HBTs are shown to exhibit sufficient current gain, frequency response, breakdown voltage, achieve acceptable device reliability, and improved low-frequency noise, at temperatures as high as 200-300 C. A comprehensive investigation of substrate bias effects on device performance, thermal properties, and reliability of vertical SiGe HBTs fabricated on CMOS-compatible, thin-film SOI, is presented. The impact of 63 MeV protons on these vertical SiGe HBTs fabricated on a CMOS-compatible SOI is then investigated. Proton irradiation creates G/R trap centers in SOI SiGe HBTs, creating positive charge at the buried oxide interface, effectively delaying the onset of the Kirk effect at high current density, which increases the frequency response of SOI SiGe HBTs following radiation. The thermodynamic stability of device-relevant epitaxial SiGe strained layers under proton irradiation is also investigated using x-ray diffraction techniques. Irradiation with 63 MeV protons is found to introduce no significant microdefects into the SiGe thin films, regardless of the starting stability condition of the SiGe film, and thus does not appear to be an issue for the use of SiGe HBT technology in emerging space systems. CMOS device reliability for emerging cryogenic space electronics applications is also assessed. CMOS device performance improves with cooling, however, CMOS device reliability becomes worse at decreased temperatures due to aggravated hot-carrier effects. The device lifetime is found to be a strong function of gate length, suggesting that design tradeoffs are inevitable.
|
220 |
Gas Viscosity at High Pressure and High TemperatureLing, Kegang 2010 December 1900 (has links)
Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in
the oil and gas production and transportation is indicated by its contribution in the
resistance to the flow of a fluid both in porous media and pipes. Although viscosity of
some pure components such as methane, ethane, propane, butane, nitrogen, carbon
dioxide and binary mixtures of these components at low-intermediate pressure and
temperature had been studied intensively and been understood thoroughly, very few
investigations were performed on viscosity of naturally occurring gases, especially gas
condensates at low-intermediate pressure and temperature, even fewer lab data were
published. No gas viscosity data at high pressures and high temperatures (HPHT) is
available. Therefore this gap in the oil industry still needs to be filled.
Gas viscosity at HPHT becomes crucial to modern oil industry as exploration and
production move to deep formation or deep water where HPHT is not uncommon.
Therefore, any hydrocarbon encountered there is more gas than oil due to the chemical
reaction causing oil to transfer to gas as temperature increases. We need gas viscosity to
optimize production rate for production system, estimate reserves, model gas injection,
design drilling fluid, and monitor gas movement in well control. Current gas viscosity
correlations are derived using measured data at low-moderate pressures and
temperatures, and then extrapolated to HPHT. No measured gas viscosities at HPHT are available so far. The validities of these correlations for gas viscosity at HPHT are
doubted due to lack of experimental data.
In this study, four types of viscometers are evaluated and their advantages and
disadvantages are listed. The falling body viscometer is used to measure gas viscosity at
a pressure range of 3000 to 25000 psi and a temperature range of 100 to 415 oF.
Nitrogen viscosity is measured to take into account of the fact that the concentration of
nonhydrocarbons increase drastically in HPHT reservoir. More nitrogen is found as we
move to HPHT reservoirs. High concentration nitrogen in natural gas affects not only the
heat value of natural gas, but also gas viscosity which is critical to petroleum
engineering. Nitrogen is also one of common inject gases in gas injection projects, thus
an accurate estimation of its viscosity is vital to analyze reservoir performance. Then
methane viscosity is measured to honor that hydrocarbon in HPHT which is almost pure
methane. From our experiments, we found that while the Lee-Gonzalez-Eakin
correlation estimates gas viscosity at a low-moderate pressure and temperature
accurately, it cannot give good match of gas viscosity at HPHT. Apparently, current
correlations need to be modified to predict gas viscosity at HPHT. New correlations
constructed for HPHT conditions based on our experiment data give more confidence on
gas viscosity.
|
Page generated in 0.0574 seconds