• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento da formulação corrotacional em elementos finitos de casca para a análise hiperelástica

Belo, Ivan Moura 24 October 2012 (has links)
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2009 / Made available in DSpace on 2012-10-24T21:53:07Z (GMT). No. of bitstreams: 1 270331.pdf: 4181606 bytes, checksum: 294a3671fc2767ff569bb49e4686c801 (MD5) / Nesta tese, é proposto um elemento finito bidimensional de casca capaz de avaliar o problema da não-linearidade material (hiperelasticidade) e geométrica de uma dada estrutura, de forma precisa e acurada, submetida a grandes deslocamentos e rotações. Para isso, são utilizados elementos finitos obtidos a partir da descrição cinemática corrotacional (CR), que está baseada na separação explícita dos movimentos de corpo rígido (translações e rotações) dos movimentos deformacionais. Como ponto de partida, o elemento é derivado no contexto da formulação de deformação deviatória natural (ANDES), da formulação corrotacional de elemento ndependente (EICR) e dos métodos de Newton e do comprimento de arco proposto por Felippa e seus colaboradores. O intuito é fazer uso de um elemento finito linear de casca capaz de descrever corretamente os fenômenos físicos e adaptá-lo ao comportamento dos materiais hiperelásticos. Foi escolhida a hiperelasticidade em particular devido à certa simplicidade de suas equações constitutivas se comparadas com não-linearidades mais severas como emmodelos elastoplásticos, viscoplásticos ou viscoelásticos. E, ainda, por ser um modelo versátil, pois pode ser empregado para descrever além de análises tipicamente de engenharia, problemas relacionados com bioengenharia (tecido humano). Para avaliar, e assim, validar o elemento proposto, resultados provinientes de soluções numéricas de outros elementos de casca, tanto 2D quanto 3D encontrados na literatura, e soluções analíticas são comparados com o elemento CR. É mostrado que o modelo proposto, além de convergir rapidamente, apresenta resultados coerentes com os apresentados na literatura e em soluções analíticas. / This thesis proposes a shell finite element for the nonlinear geometrical and material analysis of structures. The proposed model accounts for large displacements and rotations and employs the corotational formulation (CR) in order to describe the kinematic motion, which is decomposed into a rigid body (translational and rotational) motion and a pure deformation motion. As starting point, the Assumed Natural Deviatoric Strain (ANDES), the Element Independent Corotational (EICR), the Newton-Raphson method and the arc-length method proposed by Felippa and co-workers are derived and used. The aimof thework is to develop a linear shell element which is capable to describe the deformation of hyperelastic materials subjected to large displacements and rotations. As a potential application one may consider the modeling of human skin behavior, an so on. In order to investigate the of the proposed numerical procedures and to validate the hyperelasticmodels implemented in this thesis one solves a set of problems and compare the results with known analytical and numerical solutions presented in the literature.
2

Estudo de Efeitos Dinâmicos até o Início da Fratura Frágil.

VASSEM JUNIOR, A. I. 29 October 2007 (has links)
Made available in DSpace on 2016-08-29T15:35:49Z (GMT). No. of bitstreams: 1 tese_3025_.pdf: 3917329 bytes, checksum: 9b9237e04b0749a55aca9450f41ddb1a (MD5) Previous issue date: 2007-10-29 / Neste trabalho faz-se o estudo experimental de efeitos dinâmicos até o início da fra-tura frágil, utilizando-se um aparato que simula uma estrutura cristalina bidimensio-nal, na qual é possível realizar experimentos reversíveis de fratura. O aparato repro-duz características atomísticas e é formado por ímãs quadrupolares no papel de cé-lulas unitárias. Esse experimento é relevante pois a observação in-loco da região de início da fratura não é trivial. Com o objetivo de analisar detalhadamente os efeitos dinâmicos até o início da ruptura, foi desenvolvido um sistema de observação de imagem no qual foi possível obter gravações digitais com taxas da ordem de cente-nas de quadros por segundo. Durante a execução dos experimentos, foram aplica-das perturbações mecânicas ao sistema. Cada perturbação gerou uma oscilação harmônica que foi filmada com o equipamento desenvolvido. Os vídeos foram anali-sados quadro a quadro e com estes dados foram traçados gráficos da amplitude de oscilação em função do tempo onde se observaram vales e cristas que decaem ex-ponencialmente. A partir destes gráficos foram obtidas as freqüências de oscilação para cada configuração de tensão aplicada. Desta forma foi obtida a constante de mola equivalente do sistema. Também foi observado um comportamento peculiar onde um transiente ocorre antes que o primeiro vale seja obtido. O equipamento montado se mostrou eficiente para o propósito que foi idealizado e também para ou-tras aplicações envolvendo oscilações mecânicas e dinâmica de fratura, como a propagação de trincas, em materiais de módulo de elasticidade relativamente baixo como o sólido empregado neste trabalho.
3

Avaliação numérica do processo de conformação do pneu no molde

Pinati, Rubens de Castro Casagrande January 2013 (has links)
Orientador: Wesley Góis / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Engenharia Mecânica, 2013.
4

[en] APPLICATION OF A CONTINUATED METHOD OF FINITE ELASTICITY PROBLEMS OF INCOMPRESSIBLE MATERIALS / [pt] APLICAÇÃO DO MÉTODO DE CONTINUAÇÃO A PROBLEMAS DE ELASTICIDADE FINITA DE MATERIAIS INCOMPRESSÍVEIS

EDGAR NOBUO MAMIYA 15 March 2018 (has links)
[pt] Apresenta-se aqui uma aplicação do método de continuação, baseado no algoritmo de Euler-Quase Newton, a problemas de equilíbrio de materiais hiperelásticos incompressíveis sujeitos a grandes deformações. Discretiza-se o problema misto estado deformado-campo de pressão pela utilização do método dos elementos finitos, prevendo-se a compatibilidade LBB entre os espaços envolvidos. Propõe-se a utilização de uma função densidade de energia de deformação para o material de Mooney-Rivlin distinta daquela apresentada na literatura clássica, devido ao mal comportamento do Hessiano associado à formulação original. / [en] The application of a continuation method based on the Euler-Chord algorithm to equilibrium problems of incompressible, hyperelastic materials subjected to large deformations is here presented. The mixed strained state-pressure field problem is discretized by means of the finite element method, taking into account the LBB compatibility condition between the involved spaces. The utilization of a strain energy density function diverse from the one presented in the classical literature, is proposed, due to the ill behavior of the Hessian associated with the original formulation.
5

[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS HIPERELÁSTICAS BASEADA EM MÉTODOS DE INTERPOLAÇÃO / [en] TOPOLOGY OPTIMIZATION OF HYPERELASTIC STRUCTURES BASED ON INTERPOLATION METHODS

VINICIUS OLIVEIRA FONTES 21 May 2021 (has links)
[pt] O design otimizado de estruturas considerando não-linearidades tem sido amplamente pesquisado nas décadas recentes. A análise de elementos finitos aplicada à otimização topológica é prejudicada pela deformação excessiva de elementos de baixa densidade sob alta compressão, o que impede o processo de encontrar uma solução ótima. Dois métodos, o esquema Interpolação de Energia e a técnica de Hiperelasticidade Aditiva, são implementados para superar essa dificuldade no problema de minimização da flexibilidade, e modelos de materiais hiperelásticos são usados para investigar suas influências na topologia otimizada. O Método das Assíntotas Móveis é usado para atualizar as variáves de projeto cujas sensibilidades foram calculadas pelo método adjunto. A equação de estado é resolvida através do método de Newton-Raphson com um incremento de carga ajustável para reduzir o custo computacional. Resultados de dois problemas de referência são comparado com aqueles já estabelecidos na literatura. O uso de diferentes modelos hiperelásticos apresentou pouca influência no design final da estrutura. O método de Interpolação de Energia foi capaz de convergir para cargas muito maiores que o método padrão, enquanto a Hiperelasticidade Aditiva apresentou dificuldades de convergência em estado plano de deformação. / [en] The optimized design of structures considering nonlinearities has been widely researched in the recent decades. The finite element analysis applied to topology optimization is jeopardized by the excessive deformation of low-density elements under high compression, which hinders the process of finding an optimal solution. Two methods, the Energy Interpolation scheme and the Additive Hyperelasticity technique, are implemented to overcome this difficulty in the minimum compliance problem, and hyperelastic material models are used to investigate their influence on the optimized topology. The Method of Moving Asymptotes is used to update the design variables whose sensitivities were calculated from the adjoint method. The state equation is solved through the Newton-Raphson method with an adjusting load step to reduce computational cost. Results for two benchmark problems are compared with those already established in the literature. The use of different hyperelastic models presented little influence on the final design of the structure. The Energy Interpolation method was able to converge for much higher loads than the default method, while the Additive Hyperelasticity presented convergence difficulties in plane strain.
6

Análise de estruturas planas reforçadas com fibras ativas viscoelásticas e matriz com modelo constitutivo hiperelástico: aplicações gerais em engenharia e biomecânica / Analysis of plane structures reinforced with active viscoelastic fibers and matrix with hyperelastic constitutive model: general applications in engineering and biomechanics

Friedel, Luiz Fernando de Oliveira 15 March 2016 (has links)
Neste trabalho apresenta-se uma formulação para modelagem não linear geométrica e não linear elástica de materiais compósitos através da imersão de elementos finitos de barra simples em elementos finitos triangulares do tipo chapa utilizando uma formulação inovadora do método dos elementos finitos baseada em posições. Essa formulação posicional utiliza funções de forma para aproximar grandezas definidas na Teoria da Elasticidade Não Linear e propõe que a energia específica de deformação e o potencial das cargas externas sejam escritos em função das posições nodais definidas a partir de uma função mudança de configuração. Assumindo as posições nodais valores atuais em cada nó, esse método considera naturalmente a não linearidade geométrica, ao passo que relações não lineares entre tensão e deformação podem ser consideradas através de uma teoria elástica não linear denominada hiperelasticidade que permite obter leis constitutivas linearizadas em formato variacional. Utilizando malhas independentes para os elementos de barras e chapa, a técnica para a imersão das barras adota funções de forma para escrever a posição de qualquer ponto de um elemento de barra em função dos nós dos elementos de chapa, não ocorrendo, portanto, nem o aumento do número de graus de liberdade nem a necessidade de que os nós dos elementos de barra coincidam com os nós dos elementos de chapa. Além disso, nesse trabalho propõe-se também uma formulação posicional para os elementos de barra simples que utiliza uma medida de deformação chamada de não linear de engenharia, a qual permite introduzir facilmente um comportamento tanto ativo quanto viscoso nos elementos de barra imersos. As formulações propostas são idealizadas para a modelagem de tecidos musculares, não estando, no entanto, limitadas somente a esse tipo de aplicação. Os quatro primeiro exemplos escolhidos são casos simples, alguns inclusive com soluções analíticas, e são destinados principalmente à validação das formulações apresentadas. Através da modelagem de uma estrutura formada por braço e antebraço, o quinto e último exemplo demonstra as potencialidades dos conceitos trabalhados e das formulações propostas durante este trabalho. / This work presents a formulation for material and geometrical nonlinear analysis of composite materials by immersion of truss finite elements into triangular 2D solid ones using a novel formulation of the finite element method based on positions. This positional formulation uses the shape functions to approximate some quantities defined in the Nonlinear Theory of Elasticity and proposes to describe the specific strain energy and the potential of the external loads as function of nodal positions which are set from a deformation function. Because the nodal positions have current values in each node, this method naturally considers the geometric nonlinearities while the nonlinear relationships between stress and strain may be considered by a pure nonlinear elastic theory called hyperelasticity which allows to obtain linearized constitutive laws in its variational form. If independent meshes are used for the truss elements and for the 2D solid elements, the immersion technique of the trusses adopts shape functions to write the position of any point of a truss as a function of the nodal positions of the 2D solid elements, therefore there is neither an increase in the number of degrees of freedom nor the need that the nodes of the trusses elements coincide with the nodes of the 2D solid elements. Moreover, this work also proposes a positional formulation for the truss elements using a so called nonlinear engineering strain which allows to easily introduce both active and viscous behavior in the immersed truss elements. The proposed formulations are idealized for muscle tissue modeling, however they are not limited only to this type of application. The first 4 chosen examples are simple cases, some of them even with analytical solutions, mainly for validation purposes of the presented formulations. By modeling a structure formed by an arm and an forearm, the 5th and last example shows the potentialities of the concepts and proposed formulations during this work.
7

Modelos constitutivos para materiais hiperelásticos: estudo e implementação computacional / Constitutive models for hyperelastic materials: study and computational implementation

Pascon, João Paulo 01 April 2008 (has links)
O objetivo central deste trabalho é implementar modelos constitutivos hiperelásticos não lineares em um código computacional que faz análise não linear geométrica de cascas. São necessários, para este propósito, conceitos sobre álgebras linear e tensorial, cinemática, deformação, tensão, balanços, princípios variacionais, métodos numéricos e hiperelasticidade. Tal programa usa a formulação Lagrangiana posicional, o método dos elementos finitos, o princípio dos trabalhos virtuais e o método iterativo de Newton-Raphson para solução das equações não lineares. O elemento finito de casca possui dez nós, sete parâmetros por nó e variação linear da deformação ao longo da espessura. Para dedução dos novos modelos usou-se a decomposição multiplicativa do gradiente da função mudança de configuração, o tensor deformação de Green-Lagrange e o tensor da tensão de Piola-Kirchhoff de segunda espécie. O código desenvolvido foi usado em simulações de diversos exemplos e apresentou boa precisão na análise mecânica de polímeros naturais altamente deformáveis. A ocorrência do fenômeno travamento não se manifestou nas análises realizadas. A presente pesquisa confirmou outros trabalhos, reforçou a necessidade de se usar modelos hiperelásticos não lineares para simular o comportamento mecânico de polímeros naturais e apresentou resultados condizentes com dados experimentais existentes na literatura científica e às respectivas soluções analíticas. / The main objective of this work is to implement nonlinear hyperelastic constitutive models in a computational code of geometrically nonlinear analysis of shells. For this purpose, concepts of linear and tensor algebras, kinematics, strain, stress, balances, variational principles, numerical methods and hyperelasticity are necessary. Such program uses the positional Lagrangian formulation, the finite element method, the principle of virtual work and the iterative method of Newton-Raphson for the solution of the nonlinear equations. The shell finite element has ten nodes, seven parameters per node and presents linear variation of the strain along the thickness. To achieve the new constitutive models the multiplicative decomposition of the deformation gradient, the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor are used. The developed code is tested for simulations of various examples and presents good accuracy in the mechanical analysis of highly deformable natural rubber. The locking phenomena didn\'t appear in the proposed analysis. The present research confirms other works, corroborates the need of using nonlinear hyperelastic models to simulate the mechanical behavior of natural rubber and presents suitable results when compared to existent experimental data of the scientific literature and to the respective analytical solutions.
8

Modelos constitutivos para materiais hiperelásticos: estudo e implementação computacional / Constitutive models for hyperelastic materials: study and computational implementation

João Paulo Pascon 01 April 2008 (has links)
O objetivo central deste trabalho é implementar modelos constitutivos hiperelásticos não lineares em um código computacional que faz análise não linear geométrica de cascas. São necessários, para este propósito, conceitos sobre álgebras linear e tensorial, cinemática, deformação, tensão, balanços, princípios variacionais, métodos numéricos e hiperelasticidade. Tal programa usa a formulação Lagrangiana posicional, o método dos elementos finitos, o princípio dos trabalhos virtuais e o método iterativo de Newton-Raphson para solução das equações não lineares. O elemento finito de casca possui dez nós, sete parâmetros por nó e variação linear da deformação ao longo da espessura. Para dedução dos novos modelos usou-se a decomposição multiplicativa do gradiente da função mudança de configuração, o tensor deformação de Green-Lagrange e o tensor da tensão de Piola-Kirchhoff de segunda espécie. O código desenvolvido foi usado em simulações de diversos exemplos e apresentou boa precisão na análise mecânica de polímeros naturais altamente deformáveis. A ocorrência do fenômeno travamento não se manifestou nas análises realizadas. A presente pesquisa confirmou outros trabalhos, reforçou a necessidade de se usar modelos hiperelásticos não lineares para simular o comportamento mecânico de polímeros naturais e apresentou resultados condizentes com dados experimentais existentes na literatura científica e às respectivas soluções analíticas. / The main objective of this work is to implement nonlinear hyperelastic constitutive models in a computational code of geometrically nonlinear analysis of shells. For this purpose, concepts of linear and tensor algebras, kinematics, strain, stress, balances, variational principles, numerical methods and hyperelasticity are necessary. Such program uses the positional Lagrangian formulation, the finite element method, the principle of virtual work and the iterative method of Newton-Raphson for the solution of the nonlinear equations. The shell finite element has ten nodes, seven parameters per node and presents linear variation of the strain along the thickness. To achieve the new constitutive models the multiplicative decomposition of the deformation gradient, the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor are used. The developed code is tested for simulations of various examples and presents good accuracy in the mechanical analysis of highly deformable natural rubber. The locking phenomena didn\'t appear in the proposed analysis. The present research confirms other works, corroborates the need of using nonlinear hyperelastic models to simulate the mechanical behavior of natural rubber and presents suitable results when compared to existent experimental data of the scientific literature and to the respective analytical solutions.
9

Análise de estruturas planas reforçadas com fibras ativas viscoelásticas e matriz com modelo constitutivo hiperelástico: aplicações gerais em engenharia e biomecânica / Analysis of plane structures reinforced with active viscoelastic fibers and matrix with hyperelastic constitutive model: general applications in engineering and biomechanics

Luiz Fernando de Oliveira Friedel 15 March 2016 (has links)
Neste trabalho apresenta-se uma formulação para modelagem não linear geométrica e não linear elástica de materiais compósitos através da imersão de elementos finitos de barra simples em elementos finitos triangulares do tipo chapa utilizando uma formulação inovadora do método dos elementos finitos baseada em posições. Essa formulação posicional utiliza funções de forma para aproximar grandezas definidas na Teoria da Elasticidade Não Linear e propõe que a energia específica de deformação e o potencial das cargas externas sejam escritos em função das posições nodais definidas a partir de uma função mudança de configuração. Assumindo as posições nodais valores atuais em cada nó, esse método considera naturalmente a não linearidade geométrica, ao passo que relações não lineares entre tensão e deformação podem ser consideradas através de uma teoria elástica não linear denominada hiperelasticidade que permite obter leis constitutivas linearizadas em formato variacional. Utilizando malhas independentes para os elementos de barras e chapa, a técnica para a imersão das barras adota funções de forma para escrever a posição de qualquer ponto de um elemento de barra em função dos nós dos elementos de chapa, não ocorrendo, portanto, nem o aumento do número de graus de liberdade nem a necessidade de que os nós dos elementos de barra coincidam com os nós dos elementos de chapa. Além disso, nesse trabalho propõe-se também uma formulação posicional para os elementos de barra simples que utiliza uma medida de deformação chamada de não linear de engenharia, a qual permite introduzir facilmente um comportamento tanto ativo quanto viscoso nos elementos de barra imersos. As formulações propostas são idealizadas para a modelagem de tecidos musculares, não estando, no entanto, limitadas somente a esse tipo de aplicação. Os quatro primeiro exemplos escolhidos são casos simples, alguns inclusive com soluções analíticas, e são destinados principalmente à validação das formulações apresentadas. Através da modelagem de uma estrutura formada por braço e antebraço, o quinto e último exemplo demonstra as potencialidades dos conceitos trabalhados e das formulações propostas durante este trabalho. / This work presents a formulation for material and geometrical nonlinear analysis of composite materials by immersion of truss finite elements into triangular 2D solid ones using a novel formulation of the finite element method based on positions. This positional formulation uses the shape functions to approximate some quantities defined in the Nonlinear Theory of Elasticity and proposes to describe the specific strain energy and the potential of the external loads as function of nodal positions which are set from a deformation function. Because the nodal positions have current values in each node, this method naturally considers the geometric nonlinearities while the nonlinear relationships between stress and strain may be considered by a pure nonlinear elastic theory called hyperelasticity which allows to obtain linearized constitutive laws in its variational form. If independent meshes are used for the truss elements and for the 2D solid elements, the immersion technique of the trusses adopts shape functions to write the position of any point of a truss as a function of the nodal positions of the 2D solid elements, therefore there is neither an increase in the number of degrees of freedom nor the need that the nodes of the trusses elements coincide with the nodes of the 2D solid elements. Moreover, this work also proposes a positional formulation for the truss elements using a so called nonlinear engineering strain which allows to easily introduce both active and viscous behavior in the immersed truss elements. The proposed formulations are idealized for muscle tissue modeling, however they are not limited only to this type of application. The first 4 chosen examples are simple cases, some of them even with analytical solutions, mainly for validation purposes of the presented formulations. By modeling a structure formed by an arm and an forearm, the 5th and last example shows the potentialities of the concepts and proposed formulations during this work.

Page generated in 0.0269 seconds