• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating Human Endogenous Retrovirus and LINE-1 Retrotransposable Element Antigens as Novel Targets for T cell Based HIV-1 Vaccine Strategies

Jones, Richard Bradley 15 August 2013 (has links)
The global HIV-1 pandemic is new only in the sense that it is the latest iteration in a conflict between humans and retroviruses that has spanned millions of years. Bearing witness to this, our genomes are littered with the DNA remnants of ancient retroviruses. These ‘human endogenous retroviruses’ (HERVs) are generally thought to be inert. In this thesis, I explore the hypothesis that HIV-1 has had to make a compromise in order to avoid extermination by a class of cellular defence factors that our cells evolved long ago in order to defend against ancient retroviruses. In disabling these defence factors to allow for its own replication, I posit, that HIV-1 enables the expression of the ancient retroviruses, as well as LINE-1 retroelements, in our genome. I propose to use this against the virus by targeted immune responses against HERV/LINE-1 antigens as a way of killing HIV-1-infected cells.
2

Evaluating Human Endogenous Retrovirus and LINE-1 Retrotransposable Element Antigens as Novel Targets for T cell Based HIV-1 Vaccine Strategies

Jones, Richard Bradley 15 August 2013 (has links)
The global HIV-1 pandemic is new only in the sense that it is the latest iteration in a conflict between humans and retroviruses that has spanned millions of years. Bearing witness to this, our genomes are littered with the DNA remnants of ancient retroviruses. These ‘human endogenous retroviruses’ (HERVs) are generally thought to be inert. In this thesis, I explore the hypothesis that HIV-1 has had to make a compromise in order to avoid extermination by a class of cellular defence factors that our cells evolved long ago in order to defend against ancient retroviruses. In disabling these defence factors to allow for its own replication, I posit, that HIV-1 enables the expression of the ancient retroviruses, as well as LINE-1 retroelements, in our genome. I propose to use this against the virus by targeted immune responses against HERV/LINE-1 antigens as a way of killing HIV-1-infected cells.
3

Construction of a novel epitope expression vector based on the B-subunit of the diphtheria toxin

Johnson, Nicholas January 1993 (has links)
No description available.
4

Willingness to participate (WTP) in a future HIV vaccine trial in a high risk sample : perceived barriers and facilitators to participation

Parker, Fatima Bibi 12 1900 (has links)
Thesis (MSc (Psychology))--University of Stellenbosch, 2006. / HIV vaccines are currently being developed and tested worldwide. This thesis reports on a qualitative study that was conducted to determine the concerns and problems regarding participation in future HIV vaccine trials. The sample for the study was selected from a peri-urban township, Masiphumelele, in Cape Town, Western Cape province, South Africa. The HIV-prevalence rate in Masiphumelele is 25%. A total of 10 participants between the ages of 19 and 30 were recruited for the present study. All participants’ first language was Xhosa and seven of them had English as a second language. Owing to a language barrier, an interpreter assisted the interviewer in conducting the interviews in the preferred language of the participants. Participants were recruited by convenience sampling and were asked to participate in two semi-structured interviews, under confidential conditions. The first interview addressed knowledge regarding HIV/AIDS, HIV vaccines and HIV clinical trials. The second interview identified the concerns and problems participants had regarding participation in future HIV vaccine trials. The interviews were recorded, transcribed and entered into Atlas ti., a computer program that assists in the analysis of textual data. The analysis of the data focused on the content of participants’ concerns about barriers to participation and their perspectives on facilitators to participation. The data collected on concerns and problems which, may influence participants’ willingness to participate in future HIV vaccine trials, was divided into two overarching themes, namely, barriers to participation and facilitators to participation. The barriers to participation included physical symptoms, stigma and discrimination, trypanophobia, distrust, psychological distress, sexual disinhibition and family responsibilities. The facilitators to participation included altruism, own protection from HIV infection, hopefulness, medical incentives, determining of HIV status, acquisition of knowledge, and equal treatment of participants in the experimental group and the placebo control group resulting from a double-blinded randomised trial. The question of participants’, recruited in the present study, willingness to participate in a future HIV vaccine trial are discussed in terms of Bronfenbrenner’s (1979) theoretical work on ecological systems, the social learning theory and the Health Belief Model (HBM). These theoretical frameworks deal with individuals, their behaviour and their environment, and how these influence one another. The significance and future direction of this line of research helps to overcome the barriers to participation and enhance the facilitators to participation. Thus, the intended result of such efforts is to maximise individuals’ participation in future HIV vaccine trials.
5

Characterisation of T cells induced by candidate conserved region HIV-1 vaccines in healthy HIV-1/2 negative volunteers

Ahmed, Tina May January 2014 (has links)
HIV-1 has claimed the lives of millions of people globally and continues to spread despite development of highly active antiretroviral therapy. In 2013, 2.1 million new infections occurred and over 35 million people were living with HIV-1 infection. A prophylactic HIV-1 vaccine that can prevent infection or reduce viremia and subsequent transmission will always be an important part of the solution to bring this epidemic under control. In this thesis, the first HIV-1 vaccine candidate to focus on conserved regions of the virus (HIVconsv) was assessed in a phase I clinical trial conducted in healthy HIV-1/2 negative volunteers in Oxford. The HIVconsv T-cell immunogen was delivered using three leading vaccine modalities (DNA (D), modified vaccinia virus Ankara (M) and chimpanzee adenovirus serotype 63 (C)), in several novel heterologous prime-boost regimens. The frequency of T cells elicited through HIVconsv vaccination in the CM and DDDCM regimens surpassed that of previous HIV-1 cell-mediated vaccines. A large proportion of these T cells produced multiple cytokines and proliferated in response to recall peptides. The breadth of T-cell responses were also greater than the non-efficacious STEP study vaccine, with an average of 10 T-cell epitopes per vaccine recipient recognised across CM and DDDCM regimens. In vitro HIV-1 control mediated by CD8⁺ T cells was demonstrated for all vaccinees receiving the CM regimen, mainly against clade A (U455) and clade B (IIIB) isolates. Two vaccinees, demonstrated superior control of 6/8 and 7/8 viruses from the panel. The CM regimen induced significantly higher magnitudes of viral inhibition compared to the DDDCM or DDDMC regimens, with this regimen showing potential to overcome the disadvantage for subjects of carrying non-protective HLA alleles. Investigation of T-cell specificities revealed that the frequencies of T cells specific for conserved Gag but more so Pol regions significantly correlated with in vitro virus control. Direct examination of peptide expanded T-cell lines showed that all Pol pool- and limited Gag pool-specific cell lines reduced HIV-1 replication in vitro. In most individuals, targeting multiple HIV-1 epitopes concomitantly resulted in higher levels of virus inhibition than targeting a single viral epitope and two T-cell specificities showed enhanced control of HIV-1; the first within Pol (TAFTIPSI) and second from Gag (TERQANFL). These data support further development of the conserved region strategy for T-cell vaccines against HIV-1.
6

Análise da imunogenicidade de uma vacina de DNA codificando epitopos CD4 promíscuos e conservados do HIV-1 em camundongos BALB/c e transgênicos para moléculas de HLA classe II / Immunogenicity analysis of a DNA vaccine encoding promiscuous and conserved HIV-1 CD4 epitopes in BALB/c and HLA class II transgenic mice

Ribeiro, Susan Pereira 26 August 2010 (has links)
Abordagens atuais no desenho de vacinas contra o HIV-1 estão focadas em imunógenos que codificam proteínas inteiras do HIV-1 e visam induzir respostas citotóxicas específicas. É concebível que vacinas bem-sucedidas devem induzir respostas contra múltiplos epitopos do HIV-1, coincidindo com seqüências das cepas circulantes do vírus, conhecido por sua grande variabilidade genética. Sabe-se que células T CD4+ são necessárias para indução de respostas efetivas de linfócitos T CD8+ citotóxicos. Neste trabalho, nós avaliamos a imunogenicidade de uma vacina de DNA codificando 18 epitopos para linfócitos T CD4+, conservados e ligadores de múltiplas moléculas HLA-DR em camundongos BALB/c e em quatro linhagens de camundongos transgênicos para moléculas de HLA classe II. Os camundongos imunizados apresentaram respostas de amplitude e magnitude significativas com proliferação e secreção de citocinas por linfócitos T CD4+ e T CD8+. Onze dos 18 epitopos para linfócitos T CD4+ presentes na vacina foram reconhecidos pelas linhagens de camundongos transgênicos para moléculas de HLA classe II. Em suma, 17 dos 18 epitopos codificados pela vacina foram reconhecidos. As células induzidas pela vacina apresentaram um perfil polifuncional com tipo 1 de citocinas, incluindo produção de IFN- , TNF- e IL-2. A vacina também induziu células T CD4+ de memória central de longa duração, capazes de fornecer auxílio contínuo para células T CD8 +. Pela capacidade da vacina HIVBr18 de induzir respostas contra múltiplos epitopos de linfócitos T CD4+ conservados que podem ser reconhecidos no contexto de múltiplas moléculas de HLA classe II, esse conceito vacinal pode solucionar o problema da variabilidade genética viral assim como aumentar a cobertura populacional. Portanto, essa vacina, pode ser útil se utilizada isoladamente ou como fonte de auxílio cognato para células T CD8+ HIV-específicas induzidas por outros imunógenos gerando resposta em uma grande proporção dos vacinados / Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that elicit cytotoxic CD8+ responses. It is conceivable that successful vaccines have to elicit responses to multiple epitopes, to match circulating strains of HIV, a virus known for its high genetic variability. It is known that CD4+ T cell responses are necessary for effective CD8+ antiviral responses. Here we assessed the immunogenicity of a DNA vaccine encoding 18 conserved, multiple HLA-DR-binding HIV CD4 epitopes in BALB/c and four strains of HLA class II-transgenic mice. Immunized mice displayed CD4+ and CD8+ proliferative and cytokine T cell responses of significant breadth and magnitude. Eleven out of the 18 encoded epitopes were recognized by CD4+ T cells from HLA class IItransgenic strain. Overall, 17 out of the 18 encoded peptides were recognized. The induced T cell response had a polyfunctional type 1 cytokine profile, including IFN- , TNF- and IL-2. The vaccine also induced long-lived central memory CD4+ T cells, which might provide sustained help for CD8+ T cells. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be usefull either as a standalone approach or as a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, eliciting responses in a wide proportion of vaccinees
7

Análise da imunogenicidade de uma vacina de DNA codificando epitopos CD4 promíscuos e conservados do HIV-1 em camundongos BALB/c e transgênicos para moléculas de HLA classe II / Immunogenicity analysis of a DNA vaccine encoding promiscuous and conserved HIV-1 CD4 epitopes in BALB/c and HLA class II transgenic mice

Susan Pereira Ribeiro 26 August 2010 (has links)
Abordagens atuais no desenho de vacinas contra o HIV-1 estão focadas em imunógenos que codificam proteínas inteiras do HIV-1 e visam induzir respostas citotóxicas específicas. É concebível que vacinas bem-sucedidas devem induzir respostas contra múltiplos epitopos do HIV-1, coincidindo com seqüências das cepas circulantes do vírus, conhecido por sua grande variabilidade genética. Sabe-se que células T CD4+ são necessárias para indução de respostas efetivas de linfócitos T CD8+ citotóxicos. Neste trabalho, nós avaliamos a imunogenicidade de uma vacina de DNA codificando 18 epitopos para linfócitos T CD4+, conservados e ligadores de múltiplas moléculas HLA-DR em camundongos BALB/c e em quatro linhagens de camundongos transgênicos para moléculas de HLA classe II. Os camundongos imunizados apresentaram respostas de amplitude e magnitude significativas com proliferação e secreção de citocinas por linfócitos T CD4+ e T CD8+. Onze dos 18 epitopos para linfócitos T CD4+ presentes na vacina foram reconhecidos pelas linhagens de camundongos transgênicos para moléculas de HLA classe II. Em suma, 17 dos 18 epitopos codificados pela vacina foram reconhecidos. As células induzidas pela vacina apresentaram um perfil polifuncional com tipo 1 de citocinas, incluindo produção de IFN- , TNF- e IL-2. A vacina também induziu células T CD4+ de memória central de longa duração, capazes de fornecer auxílio contínuo para células T CD8 +. Pela capacidade da vacina HIVBr18 de induzir respostas contra múltiplos epitopos de linfócitos T CD4+ conservados que podem ser reconhecidos no contexto de múltiplas moléculas de HLA classe II, esse conceito vacinal pode solucionar o problema da variabilidade genética viral assim como aumentar a cobertura populacional. Portanto, essa vacina, pode ser útil se utilizada isoladamente ou como fonte de auxílio cognato para células T CD8+ HIV-específicas induzidas por outros imunógenos gerando resposta em uma grande proporção dos vacinados / Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that elicit cytotoxic CD8+ responses. It is conceivable that successful vaccines have to elicit responses to multiple epitopes, to match circulating strains of HIV, a virus known for its high genetic variability. It is known that CD4+ T cell responses are necessary for effective CD8+ antiviral responses. Here we assessed the immunogenicity of a DNA vaccine encoding 18 conserved, multiple HLA-DR-binding HIV CD4 epitopes in BALB/c and four strains of HLA class II-transgenic mice. Immunized mice displayed CD4+ and CD8+ proliferative and cytokine T cell responses of significant breadth and magnitude. Eleven out of the 18 encoded epitopes were recognized by CD4+ T cells from HLA class IItransgenic strain. Overall, 17 out of the 18 encoded peptides were recognized. The induced T cell response had a polyfunctional type 1 cytokine profile, including IFN- , TNF- and IL-2. The vaccine also induced long-lived central memory CD4+ T cells, which might provide sustained help for CD8+ T cells. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be usefull either as a standalone approach or as a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, eliciting responses in a wide proportion of vaccinees
8

Protein Engineering of HIV-1 Env and Human CD4

Saha, Piyali January 2013 (has links) (PDF)
Since, its discovery over three decades ago, HIV has wrecked havoc worldwide. According to the UNAIDS report 2011, at present 34 million people is living with HIV and AIDS vaccine with broadly neutralizing activity still remains elusive. The envelope glycoproteins on the virion surface, is the most accessible component to the host immune system and therefore is targeted for vaccine design. However, the virus has employed various strategies to avoid the host immune response. The extremely high rate of mutations, extensive glycosylation of the envelope glycoprotein, conformational flexibility of the envelope, has made all the efforts aimed to design a broadly neutralizing immunogen futile. In Chapter1, we briefly discuss about the structural and genomic organization of the HIV-1 along with various strategies the virus has employed to evade the immune system. We also present the progress and failures encountered in the past three decades, on the way to design protective HIV vaccine and inhibitors. On the host cell surface, HIV-1 glycoprotein gp120 binds to the cell surface receptor CD4 and leads to the fusion of viral and host cellular membranes. CD4 is present on the surface of T-lymphocytes. It consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1−D4. sCD4 has been used as an entry inhibitor against HIV-1. However, this molecule could not neutralize primary isolates of the virus. Previously, from our lab, we had reported the design and characterization of a construct consisting of the first two domains of CD4 (CD4D12), that binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192−16202]. In Chapter 2, we describe the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. All the mutations in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC50s as 4-domain CD4. These stabilized derivatives of human CD4 are useful starting points for the design of other more complex viral entry inhibitors. Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120−gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. One group of cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface and the other group claimed that the V1V2 loop region is far from the apex of the trimer. To further investigate the position of the V1V2 region, in the native envelope trimer, in Chapter 3, we describe the design and characterization of cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cyc1, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with ~15-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface. HIV-1 envelope (env) protein gp120 has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 variable loops and the rest in the outer domain (OD) of gp120. These glycans shield env from recognition by the host immune system and are believed to be indispensable for proper folding of gp120 and viral infectivity. However, there is no detailed study that describes whether a particular potential n-linked glycan is indispensable for folding of gp120.Therefore, in Chapter 4, using rationally designed mutations and yeast surface display (YSD), we show that glycosylation is not essential for the correct in vivo folding of OD alone or OD in the context of core gp120. Following randomization of the remaining four glycosylation sites, we isolated a core gp120 mutant, which contained a single inner domain glycan and retained yeast surface expression and broadly neutralizing antibody (bNAb) binding. Thus demonstrates that most gp120 glycans are dispensable for folding in the absence of gp41. However in the context of gp160, we show that all core gp120 glycans are dispensable for folding, recognition of bNAbs and for viral infectivity. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of these constructs will also be useful for epitope mapping and env structural characterization. Glycosylation of env is known to inhibit binding to germline precursors of known bNAbs. Hence the present results inform immunogen design, clarify the role of glycosylation in gp120 folding and illustrate general methodology for design of glycan free, folded protein derivatives. On the virion surface env glycoproteins gp120 and gp41 interact via non-covalent interactions and form trimers of heterodimers. Upon binding cell surface receptor CD4 and co-receptor CCR5/CXCR4, gp120 and gp41 undergo a lot of conformational changes, which ultimately lead to the fusion of viral and cellular membranes by formation of six-helix bundle in gp41. High resolution structural information is available for core gp120 and post-fusion six-helix bundle conformation of gp41. However, the structural information about the native gp120:gp41 interface in the native trimer is lacking. In Chapter 5, we describe the design and characterization of various single chain derivatives of gp120 inner doamin and gp41. Among the designed constructs, gp41-id2b is folded but is a mixture of dimer and monomer under native conditions. To facilitate, trimer formation, two trimerization domains (h-CMP and Foldon) were individually fused to the N-terminus of gp41-id2b to generate h-CMP-gp41-id2b and Foldon-gp41-id2b. Although, these molecules were proteolytically more stable than gp41-id2b, they did not form trimer under native conditions. All the single chain derivatives were designed based on the crystal structure of gp120, which was devoid of C1 and C5 domains (PDBID 1G9M). A new set of constructs to mimic the native gp120:gp41 interface will be designed and characterized based on the recently solved crystal structure of gp120 with the C1 and C5 domains (PDBID 3JWD and 3JWO). Helix-helix interactions are fundamental to many biological signals and systems, found in homo- or hetero-multimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six helix bundle (6HB) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Yeast surface two-hybrid (YS2H) system is a platform, which is designed to detect protein-protein interactions occurring through a secretory pathway. In Chapter 6, we describe the use of aYS2H system, to reconstitute 6HB complex on the yeast surface and delineate the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for facile characterization of hetero-oligomeric interactions and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils. However, using this YS2H platform, the native hetero-oligomeric complex of gp120 and gp41 could not be captured. In Appendix 1, we report cloning, expression and purification of PΔGgp120 and ΔGgp120 from methylotrophic yeast Pichia pastoris. PΔGgp120 was purified as a secreted protein. However, in electrophoretic analyses the molecule ran as a heterogeneous smear. Further optimization of the purification protocol and biophysical characterizations of this molecule will be performed in future. In Appendix 2, gp41 variants were expressed on the yeast cell surface as a C-terminally fused protein and its interaction with externally added gp120 was monitored by FACS. The surface expression of the gp41 constructs was poor and they did not show any interaction with gp120.

Page generated in 0.0544 seconds