• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 5
  • 3
  • 1
  • Tagged with
  • 49
  • 49
  • 14
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of Wnt ligands and Fz receptors in Ecdysozoa : Investigating the evolution of segmentation

Hogvall, Mattias January 2015 (has links)
No description available.
12

Avaliação do perfil genômico dos genes da família HOX em tumores a partir de dados de bancos públicos / Genomic profile evaluation of HOX genes family in cancer using public databases

Jessica Rodrigues Plaça 11 October 2017 (has links)
A família de genes HOX compreende um conjunto de fatores de transcrição altamente conservados evolutivamente. Em mamíferos, os genes HOX se subdividem em 4 clusters: HOXA, HOXB, HOXC e HOXD, atuando no desenvolvimento embrionário com a regulação de processos biológicos como proliferação, diferenciação, migração, angiogênese e apoptose que são reativados durante a carcinogênese. Estudos recentes apontam que os genes HOX podem exercer papel relevante na formação de diversos tumores sólidos, todavia ainda não foi possível caracterizar sistematicamente a expressão dos genes HOX em tumores bem como determinar seus alvos em tumores. Desta forma, o objetivo geral deste trabalho consistiu na caracterização in silico do modelo de atuação genes HOX na carcinogênese. Para cumprir este objetivo foi identificado o perfil diferencial dos genes HOX entre amostras normais e tumorais. Alvos de genes HOX foram identificados e, quando diferencialmente expressos, foram associados com os genes HOX, independentemente dos índices de metilação e CNA. Por fim, as associações finais entre os genes HOX e seus alvos foram enriquecidas com os bancos de dados KEGG e GO. Identificou-se diferentes assinaturas de expressão de genes HOX em diferentes tumores, associadas com o eixo ântero-posterior do corpo humano, bem como os folhetos embrionários originários aos tecidos tumorais, compatível com o padrão de expressão no desenvolvimento embrionário. Um número considerável de genes HOX atuam preferencialmente via enhancers na regulação de seus alvos. Como exemplo, os genes HOXB7 e HOXC11, que funcionam como moduladores anti tumorais. Finalmente, o estudo mostra que diante do número crescente de dados genômicos públicos, é possível viabilizar projetos de grande valor científico. / The HOX gene family comprises a set of evolutionarily highly conserved transcription factors. In mammals, HOX genes are subdivided into four clusters: HOXA, HOXB, HOXC and HOXD, acting on the embryonic development with regulation of biological processes such as proliferation, differentiation, migration, angiogenesis and apoptosis that are reactivated during carcinogenesis. Recent studies indicate that HOX genes may play a relevant role in the formation of several solid tumors, but it has not been possible to systematically characterize the expression of HOX genes in tumors as well as to determine their targets in tumors. Thus, the general aim of this project was to characterize the in vivo model of HOX genes in carcinogenesis. To accomplish this goal the differential profile of HOX genes was identified between normal and tumor samples. HOX gene targets were identified and, when differentially expressed, were associated with HOX genes regardless of methylation and CNA indices. Finally, the final associations between the HOX genes and their targets were enriched with the KEGG and GO databases. Different signatures of HOX gene expression were identified in different tumors, associated with the anteroposterior axis of the human body, as well as the embryonic leaflets originating from the tumor tissues, compatible with the expression pattern in the embryonic development. A considerable number of HOX genes preferentially act via enhancers in the regulation of their targets. As an example, the HOXB7 and HOXC11 genes, which function as pro-tumor modulators. Finally, the study shows that in view of the growing number of public genomic data, it is possible to make feasible projects of great scientific value.
13

A Journey Through the Developing Kidney:Analysis of normal and Hoxa9,10,11-/-Hoxd9,10,11-/- Mouse Models

Magella, Bliss 07 June 2018 (has links)
No description available.
14

CONSTRUCTION OF THE pC5C9LZAP VECTOR FOR ANALYSIS OF ELEMENTS RESPONSIBLE FOR SHARED AND SEPARATE REGULATION OF HOXC-8 AND HOXC-6

Petrey, Maria Elaine 11 October 2001 (has links)
No description available.
15

The role of HOXB9 and miR-196a in head and neck squamous cell carcinoma

Darda, L., Hakami, F., Morgan, Richard, Murdoch, C., Lambert, D.W., Hunter, K.D. 04 October 2015 (has links)
Yes / Background - Previous studies have demonstrated that a number of HOX genes, a family of transcription factors with key roles in early development, are up-regulated in head and neck squamous cell carcinoma (HNSCC) and other cancers. The loci of several Homeobox (HOX) genes also contain microRNAs (miRs), including miR-196a. Methods - Global miR expression and expression of all 39 HOX genes in normal oral keratinocytes (NOKs), oral pre-malignant (OPM) and HNSCC cells was assessed by expression microarray and qPCR and in tissues by immunohistochemistry (IHC) and qPCR of laser microdissected (LCM) tissues. Expression of miR196a and HOXB9 was reduced using anti-miR-196a and siRNA, respectively. Expression microarray profiles of anti-miR196a and pre-miR196a transfected cells were compared to parental cells in order to identify novel targets of miR- 196a. Putative miR196a targets were validated by qPCR and were confirmed as binding to the 3’UTR of miR196a by a dual luciferase reporter assay combined with mutational analysis of the miR-196a binding site. Results - miR-196a and HOXB9 are highly expressed in HNSCC compared to NOKs, a pattern also seen in HNSCC tissues by HOXB9 IHC and qPCR of miR-196a in LCM tissue. Knock-down of miR-196a expression decreased HNSCC cell migration, invasion and adhesion to fibronectin, but had no effect on proliferation. Furthermore, knock-down of HOXB9 expression decreased migration, invasion and proliferation but did not alter adhesion. We identified a novel primary mRNA transcript containing HOXB9 and miR196a-1 as predicted from in-silico analysis. Expression array analysis identified a number of miR196a targets, including MAMDC2 and HOXC8. We confirmed that MAMDC2 is a novel miR-196a target using a dual luciferase reporter assay with the effect abolished on mutation of the binding site. Conclusions - These results show that miR-196a and HOXB9 are overexpressed, perhaps co-ordinately, as HNSCC develops and exert a pro-tumourigenic phenotype in HNSCC and OPM cells.
16

The prognostic significance of specific HOX gene expression patterns in ovarian cancer

Kelly, Z., Moller-Levet, C., McGrath, S., Butler-Manuel, S., Madhuri, T.K., Kierzek, A.M., Pandha, H.S., Morgan, Richard, Michael, A. 25 May 2016 (has links)
Yes / HOX genes are vital for all aspects of mammalian growth and differentiation, and their dysregulated expression is related to ovarian carcinogenesis. The aim of the current study was to establish the prognostic value of HOX dysregulation as well as its role in platinum resistance. The potential to target HOX proteins through the HOX/PBX interaction was also explored in the con-text of platinum resistance. HOX gene expression was determined in ovarian cancer cell lines and primary EOCs by QPCR, and compared to expression in normal ovarian epithelium and fallopian tube tissue samples. Statistical analysis included one-way ANOVA and t-tests, using statistical software R and GraphPad. The analysis identified 36 of the 39 HOX genes as being overex-pressed in high grade serous EOC compared to normal tissue. We detected a molecular HOX gene-signature that predicted poor outcome. Overexpression of HOXB4 and HOXB9 was identified in high grade serous cell lines after platinum resistance developed. Targeting the HOX/PBX dimer with the HXR9 peptide enhanced the cytotoxicity of cisplatin in platinum-resistant ovarian cancer. In conclusion, this study has shown the HOX genes are highly dysregulated in ovarian cancer with high expression of HOXA13, B6, C13, D1 and D13 being predictive of poor clinical outcome. Targeting the HOX/PBX dimer in platinum–resistant cancer represents a potentially new therapeutic option that should be further developed and tested in clinical trials. / This research was supported by GRACE, a gynaecological charity based in Surrey, UK.
17

Targeting HOX-PBX interactions causes death in oral potentially malignant and squamous carcinoma cells but not normal oral keratinocytes

Platais, C., Radhakrishnan, R., Ebensberger, S.N., Morgan, Richard, Lambert, D.W., Hunter, K.D. 07 June 2018 (has links)
Yes / Background: High HOX gene expression has been described in many cancers, including oral squamous cell carcinoma and the functional roles of these genes are gradually being understood. The pattern of overexpression suggests that inhibition may be useful therapeutically. Inhibition of HOX protein binding to PBX cofactors by the use of synthetic peptides, such as HXR9, results in apoptosis in multiple cancers. Methods: Activity of the HOX-PBX inhibiting peptide HXR9 was tested in immortalised normal oral (NOK), potentially-malignant (PMOL) and squamous cell carcinoma (OSCC) cells, compared to the inactive peptide CXR9. Cytotoxicity was assessed by LDH assay. Expression of PBX1/2 and c-Fos was assessed by qPCR and western blotting. Apoptosis was assessed by Annexin-V assay. Results: PMOL and OSCC cells expressed PBX1/2. HOX-PBX inhibition by HXR9 caused death of PMOL and OSCC cells, but not NOKs. HXR9 treatment resulted in apoptosis and increased expression of c-Fos in some cells, whereas CXR9 did not. A correlation was observed between HOX expression and resistance to HXR9. Conclusion: Inhibition of HOX-PBX interactions causes selective apoptosis of OSCC/PMOL, indicating selective toxicity that may be useful clinically. / Intercalated Degree Scholarship from the Harry Bottom Trust; scholarship by Becas Chile, Comisión Nacional de Investigación Científica y Tecnológica de Chile (CONICYT), Grant 72160041
18

Role of linker histone H1 in epigenetic regulation of pluripotency genes and Hox genes

Zhang, Yunzhe 27 May 2016 (has links)
Linker histone H1 plays a key role in facilitating folding of higher order chromatin structure. Previous studies have shown that deletion of three somatic H1 subtypes together leads to embryonic lethality and that H1c/H1d/H1e triple knockout (TKO) embryonic stem cells (ESCs) display bulk chromatin decompaction. Following this initial work, we investigated the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, as well as the regulation of Hox genes expression. We find that H1 TKO ESCs are more resistant to spontaneous differentiation, impaired in embryoid body differentiation, and largely blocked in neural differentiation. We present evidence that H1 contributes to efficient repression of the expression of pluripotency factors, Oct4 and Nanog, and participates in establishment and maintenance of DNA methylation and histone modification necessary for silencing pluripotency genes during stem cell differentiation and embryogenesis. In addition, we find reduced expression of a distinct set of Hox genes in embryos and ESCs, respectively. Furthermore, by characterizing H1c−/−; H1d−/−; and H1e−/− single-H1 null ESCs established in this study, we showed that individual H1 subtypes regulated specific Hox genes in ESCs. Finally, we demonstrate that the levels of H3K4me3 were significantly diminished at the affected Hox genes in H1 TKO- and single-H1 KO- ESCs, whereas H3K27me3 occupancy is modestly increased at specific Hox genes. Our results suggest that marked reduction of H1 levels and decondensation of bulk chromatin affect the expression of pluripotency genes and Hox genes in embryos and ESCs, which may be in part mediated through establishment and maintenance of epigenetic marks.
19

Mayer-Rokitansky-Kuster-Hauser Syndrome

Shy, Hannah Marie January 2016 (has links)
Mayer-Rokitansky-Kuster-Hauser Syndrome is a congenital disorder of the female reproductive tract due to impaired Müllerian duct development. There are three known categorical presentations: isolated, atypical, and MURCS association. Several developmentally significant factors including inappropriate AMH/AMHR interaction, and mutations in the WNT gene family and HOXA7-13 cluster have been studied. There has also been investigation into an autosomal dominant pattern of inheritance in families with multiple cases of the syndrome. Due to the presence of multiple subsets of patients with similar genetic abnormalities, it seems unlikely that a single etiology will be discovered.
20

Evolution Of Arthropod Morphological Diversity

Pace, Ryan M. January 2015 (has links)
A fundamental problem in developmental and evolutionary biology is understanding the developmental genetic basis of morphological diversity. The current paradigm holds that a genetic and developmental program, or developmental genetic "toolkit", conserved across hundreds of millions of years patterns development in all metazoans. However, outside of a few well-characterized signal transduction pathways and developmental processes, overly broad strokes have been used to paint this "toolkit" metaphor as a hypothesis. Arthropoda, one of the largest groups of metazoans, represent the most morphologically diverse groups of metazoans, making them of particular interest for studies of morphological diversity and its evolution. Arthropoda is also home to one of the most well-understood model systems for developmental and genetic studies, the fruit fly Drosophila melanogaster. However, Drosophila is highly derived among arthropods with respect to the molecular genetic mechanisms that function during its development. As it is expected that all arthropods have access to the same development "toolkit", some changes are expected based on the observable differences in morphology, making arthropods extremely powerful tools for comparative genomic and molecular genetic studies. In this dissertation I characterize how modifications to the developmental "toolkit" contribute to the evolution of morphological diversity using emerging model arthropod systems. First, as part of a collaboration, I show that several genes expected to be conserved in all arthropods, belonging to the Hox family of transcription factors, have been lost from the genome of a phylogenetically basal arthropod, the two-spotted spider mite Tetranychus urticae. Second, I perform a genomic survey and find an overall reduction in the conservation of Drosophila orthologs from several major signal transduction pathways in the Tetranychus genome in comparison with findings from previous insect surveys. Third, I show that arthropod Hox genes, expected to be found in a tightly linked genomic cluster in most arthropod genomes, are not as tightly clustered as previously thought. Fourth, I show that changes in the genomic arrangement of Tetranychus Hox genes correspond with shifts in their expression and morphological change. Finally, I show the terminal Hox gene Abdominal-B is required for proper axial elongation and segment formation (both segment identity and number) during embryogenesis and metamorphosis in the red-flour beetle Tribolium castaneum. Taken together, these findings advance our knowledge of the evolution of morphological change, with a primary focus on Hox genes and their contribution to axial patterning during development.

Page generated in 0.0709 seconds