• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 419
  • 305
  • 125
  • 46
  • 41
  • 13
  • 12
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1158
  • 295
  • 163
  • 128
  • 110
  • 109
  • 106
  • 103
  • 101
  • 84
  • 81
  • 77
  • 71
  • 71
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
961

Molekulárně cytogenetická diagnostika marker chromozomů / Molecular-cytogenetic diagnostics of marker chromosomes

Tesner, Pavel January 2018 (has links)
Supernumerary marker chromosomes (sSMCs) are a relatively rare cytogenetic phenomenon. Their laboratory examination is often difficult, and the clinical interpretation is even more challenging. The main reason is that most sSMC carriers have no clinical manifestations. The chromosome origin and exact range of the aberration are very important, as well as the fact that sSMCs are often found in mosaics that can strongly influence both the phenotype and the interpretation of result. Prenatal sSMC finding is one of the most challenging situations in both clinical and laboratory genetics. This work deals with the investigation process of sSMC carriers using molecular cytogenetic techniques, especially fluorescence in situ hybridization (FISH). We investigated a total of 67 families collected both prospectively and retrospectively, and we found 70 unique sSMCs in a total of 74 individuals. Six cases were familial and in three cases two sSMCs were found in one individual. According to the initial karyotype finding, the cases were divided into two groups, sSMCs supernumerary to a normal karyotype (group A) and sSMCT s supernumerary to the Turner karyotype (group B). The chromosomal origin was successfully determined in 88,6 % sSMCs. In group A the most common findings were sSMCs derived from chromosome 15,...
962

Dříve evoluční zatracenci, nyní tvůrci reprodukční strategie: původ a reprodukce samčí linie vodních skokanů Pelophylax esculentus / Earlier evolutionary dead-ends, now the creators of a reproductive strategy: the origin and reproduction of the all-male water frog lineage Pelophylax esculentus

Doležálková, Marie January 2017 (has links)
Asexual modes of reproduction are usually based on the principle of copying (cloning) DNA from the female and passing it on to the offspring. For most asexually reproducing vertebrates the progeny develop from an unreduced and often unfertilised egg. This is driven by the mechanisms of parthenogenetic and gynogenetic reproduction. While in the former the clonal germ cell develops spontaneously and separately, in the latter a sexual partner is needed to activate the cleavage of the ovum, although without the fusion of the sperm and egg. Therefore in both cases there is no fertilization and the clonal progeny consist solely of daughters, hence the majority of previous studies have only focused on asexual female lineages. However, on rare occasions asexual clonal males can arise when the right fertilization occurs. Whilst these offspring are usually infertile, fertile diploid asexual males have been discovered in just three genera of hybrid origin in vertebrates. One of these unique cases is the European water frog complex of the genus Pelophylax, whose distribution includes the Czech Republic. In areas around the upper Odra River populations of hybrid males were recently discovered who form stable all-male lineages, similar to those formed by asexual females. The results of this study show that males produce...
963

Identifikace klíčových regulátorů genové exprese v savčím oocytu a embryu / Identification of key regulators of gene expression in mammalian oocyte and embryo

Jansová, Denisa January 2017 (has links)
Mammalian oocyte is a highly differentiated cell which gives rise to an embryo after fertilization. Importantly, fully-grown oocytes become transcriptionally inactive at the end of the growth phase. During following stages of development, i. e. meiotic maturation of the oocyte and early embryonic development, only transcripts previously synthesized and stored are used. The tight correlation between mRNA distribution and subsequent protein localization and function provides a mechanism of spatial and temporal regulation of gene expression used by various cell types. However, not much is known about mRNA localization and translation in the mammalian oocyte and early embryo. The aim of my thesis was to determine the localization of transcripts and components of translational machinery in the mammalian oocyte and embryo and to uncover the mechanisms of spatiotemporal regulation of translation as a prerequisite for correct oocyte and embryo development. We have shown that nuclei of both mouse and human oocytes contain RNA molecules and RNA binding proteins. Following the nuclear envelope breakdown (NEBD), translational hot-spots occur in the area surrounding the nuclear region. We suppose that mRNAs previously retained in the nucleus are released to the cytoplasm during NEBD and their subsequent...
964

Analysis of Parabolic Trough Solar Energy Integration into Different Geothermal Power Generation Concepts

Vahland, Sören January 2013 (has links)
The change in climate as a consequence of anthropogenic activities is a subject ofmajor concerns. In order to reduce the amount of greenhouse gas emissions inthe atmosphere, the utilization of renewable, fossil-free power generationapplications becomes inevitable. Geothermal and solar energy play a major rolein covering the increased demand for renewable energy sources of today’s andfuture’s society. A special focus hereby lies on the Concentrating Solar Powertechnologies and different geothermal concepts. The costs for producingelectricity through Concentrating Solar Power and therefore Parabolic Trough Collectorsas well as geothermal conversion technologies are still comparatively high. Inorder to minimize these expenses and maximize the cycle’s efficiency, thepossible synergies of a hybridization of these two technologies becomeapparent. This thesis therefore investigates the thermodynamic and economicbenefits and drawbacks of this combination from a global perspective. For that,a Parabolic Trough Collector system is combined with the geothermal conversionconcepts of Direct Steam, Single and Double Flash, Organic Rankine as well asKalina Cycles. The solar integrations under investigation are Superheat,Preheat and Superheat & Reheat of the geothermal fluid. The thermodynamicanalysis focuses on the thermal and utilization efficiencies, as well as therequired Parabolic Trough Collector area. The results indicate that in the caseof the Superheat and Superheat & Reheat setup, the thermal efficiency canbe improved for all geothermal concepts in comparison to their correspondinggeothermal stand-alone case. The Preheat cases, with the major contributionfrom solar energy, are not able to improve the cycle’s thermal efficiencyrelative to the reference setup. From an exergy perspective the findings varysignificantly depending on the applied boundary conditions. Still, almost allcases were able to improve the cycle’s performance compared to the referencecase. For the economic evaluation, the capital investment costs and thelevelized costs of electricity are studied. The capital costs increasesignificantly when adding solar energy to the geothermal cycle. The levelizedelectricity costs could not be lowered for any hybridization case compared tothe reference only-geothermal configurations. The prices vary between20.04 €/MWh and 373.42 €/MWh. When conducting a sensitivity analysison the solar system price and the annual mean irradiance, the Kalina Superheatand Superheat & Reheat, as well as the Organic Rankine Preheathybridizations become cost competitive relative to the reference cases.Concluding, it is important to remark, that even if the hybridization of the ParabolicTrough and the different geothermal concepts makes sense from a thermodynamicperspective, the decisive levelized costs of electricity could not be improved.It is, however, possible that these costs can be further reduced under speciallocal conditions, making the addition of Parabolic Trough solar heat tospecific geothermal concepts favorable.
965

Hybridní geografie domácností / Hybrid Geographies of households

Rousová, Zuzana January 2013 (has links)
This thesis is based on a qualitative research which draws from three case-studies of different households of alternative buildings. I am focused on those processes which are actively shaping these places regarding mutual human and non-human interactions. The movements of households' material elements are shown through spatial and temporal trajectories. By doing so I refer to the active meaning of materiality which was neglected by social sciences for a long time. The study demonstrates the importance of materiality not only as a significant driver of household's material reality but also of social practices overlapping societal phenomena. Key words semi-structural interview; alternative architecture; household; materiality; quasi- technologies; hybridization; spatial and temporal trajectories
966

Single-Molecule Imaging Reveals that Argonaute Re-Shapes the Properties of its Nucleic Acid Guides: A Dissertation

Salomon, William E. 07 December 2015 (has links)
Small RNA silencing pathways regulate development, viral defense, and genomic integrity in all kingdoms of life. An Argonaute (Ago) protein, guided by a tightly bound, small RNA or DNA, lies at the core of these pathways. Argonaute uses its small RNA or DNA to find its target sequences, which it either cleaves or stably binds, acting as a binding scaffold for other proteins. We used Co-localization Single-Molecule Spectroscopy (CoSMoS) to analyze target binding and cleavage by Ago and its guide. We find that both eukaryotic and prokaryotic Argonaute proteins re-shape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization: a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Counter to the rules of nucleic acid hybridization alone, we find that mouse AGO2 and its guide bind to microRNA targets 17,000 times tighter than the guide without Argonaute. Moreover, AGO2 can distinguish between microRNA-like targets that make seven base pairs with the guide and the products of cleavage, which bind via nine base pairs: AGO2 leaves the cleavage products faster, even though they pair more extensively. This thesis presents a detailed kinetic interrogation of microRNA and RNA interference pathways. We discovered sub-domains within the previously defined functional domains created by Argonaute and its bound DNA or RNA guide. These sub-domains have features that no longer conform to the well-established properties of unbound oligonucleotides. It is by re-writing the rules for nucleic acid hybridization that Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than that of RNA or DNA. Taken altogether, these studies further our understanding about the biology of small RNA silencing pathways and may serve to guide future work related to all RNA-guided endonucleases.
967

Telomere Length Dynamics in Human T Cells: A Dissertation

O'Bryan, Joel M. 14 October 2011 (has links)
Telomere length has been shown to be a critical determinant of T cell replicative capacity and in vivo persistence in humans. We evaluated telomere lengths in virus-specific T cells to understand how they may both shape and be changed by the maintenance of memory T cells during a subsequent virus re-infection or reactivation. We used longitudinal peripheral blood samples from healthy donors and samples from a long-term HCV clinical interferon therapy trial to test our hypotheses. To assess T cell telomere lengths, I developed novel modifications to the flow cytometry fluorescence in situ hybridization (flowFISH) assay. These flowFISH modifications were necessary to enable quantification of telomere length in activated, proliferating T cells. Adoption of a fixation-permeabilization protocol with RNA nuclease treatment prior to telomere probe hybridization were required to produce telomere length estimates that were consistent with a conventional telomere restriction fragment length Southern blot assay. We hypothesized that exposure to a non-recurring, acute virus infection would produce memory T cells with longer telomeres than those specific for recurring or reactivating virus infections. We used two acute viruses, vaccinia virus (VACV) and influenza A virus (IAV) and two latent-reactivating herpesviruses, cytomegalovirus (CMV) and varicella zoster virus (VZV) for these studies. Combining a proliferation assay with flowFISH, I found telomeres in VACV-specific CD4 + T cells were longer than those specific for the recurring exposure IAV; data which support my hypothesis. Counter to my hypothesis, CMV-specific CD4 + T cells had longer telomeres than IAV-specific CD4 + T cells. We assessed virus-specific CD4 + T cell telomere length in five donors over a period of 8-10 years which allowed us to develop a linear model of average virus-specific telomere length changes. These studies also found evidence of long telomere, virus-specific CD45RA + T cell populations whose depletion may precede an increased susceptibility to latent virus reactivation. I tested the hypothesis that type I interferon therapy would accelerate T cell telomere loss using PBMC samples from a cohort of chronic hepatitis C virus patients who either did or did not receive an extended course of treatment with interferon-alpha. Accelerated telomere losses occurred in naïve T cells in the interferon therapy group and were concentrated in the first half of 48 months of interferon therapy. Steady accumulation of CD57 + memory T cells in the control group, but not the therapy group, suggested that interferon also accelerated memory turnover. Based on our data, I present proposed models of memory T cell maintenance and impacts of T cell telomere length loss as we age.
968

The Production and Localization of Luteinizing Hormone in the Brain

Courtney, Ya'el Carmel 29 May 2019 (has links)
No description available.
969

Differential Analysis of Unique Genes Expressed in <i>Stenotrophomonas maltophilia</i> Strain OR02 in Response to Selenite

Moffo, Nathan 28 August 2019 (has links)
No description available.
970

Ein Sequenzdesign-Algorithmus für verzweigte DNA-Strukturen

Seiffert, Jan 07 November 2008 (has links)
Aufgrund ihrer Selbstorganisationseigenschaften besitzt DNA ein großes Potential für den Einsatz in Bottom-up-Techniken der Nanotechnologie. So erlaubt DNA eine genau definierte Anordnung von Bauelementen im Abstand von nur wenigen Nanometern. Zum Beispiel kann ein regelmäßig mit Metallclustern oder Proteinen bestücktes DNA-Netz als Katalysator oder in Sensoren eingesetzt werden. DNA wird außerdem als Templat für Nanodrähte benutzt und kann deshalb eine wichtige Rolle in einer zukünftigen Nanoelektronik spielen. DNA-Strukturen entstehen meist durch Selbsassemblierung von Einzelstrangmolekülen während einer Hybridisierung. Die Assemblierung wird dabei durch die Basensequenzen der beteiligten Einzelstränge gesteuert. Das bedeutet: Die Basensequenzen der Einzelstränge definieren die Gestalt der entstehenden Struktur. Diese Dissertation stellt Regeln für Sequenzkonfigurationen vor, welche DNA-Einzelstränge erfüllen müssen, damit die erfolgreiche Selbstassemblierung einer gewünschten Zielstruktur erfolgreich sein kann. Das Grundprinzip dieser Regeln ist eine Minimierung der Länge von Basenfehlpaarungen. Es wird ein Algorithmus entwickelt, welcher diese Regeln umsetzt und für beliebige Zielstrukturen passende Sequenzkonfigurationen erzeugt. Der Algorithmus arbeitet vollautomatisch und ist für die meisten Strukturgrößen sehr schnell. Eine Java-Implementierung des Algorithmus mit Namen Seed ist unter http://nano.tu-dresden.de/~jseiffert/Seed/ frei erhältlich. Abschließend präsentiert diese Arbeit ein Experiment, in welchem eine Reihe von Double-Crossover-(DX)-Molekülen zu einer langen Kette verbunden werden. Die Sequenzkonfiguration für dieses Experiment wurde mit Seed erstellt und zeigt die Anwendungsfähigkeit des vorgestellten Algorithmus. / Due to its self-recognition abilities, DNA has a great potential to disclose new bottom-up routes towards nanofabrication. DNA allows well-defined arrangements of building blocks with only a few nanometer distance. For example, a DNA network with regulary attached metal beeds or proteins can be placed on a surface to act as a catalyst or a sensor. DNA can also be used as template for nanowires and, therefore, might play a major role in future nanoelectronics. DNA structures mostly assemble themselves by hybridization of single stranded DNA molecules. The self-assemby process is controlled by the base sequences of the single strands: The sequence configuration defines the shape of the resulting structure. This thesis introduces rules for sequence configuration that DNA strands must fullfill to produce a desired target structure in a hybridazation process. The basic principle of these rules is a mismatch minimization. An algorithm is presented, which generates suitable sequence configurations according to the introduced rules. The algorithm can handle any DNA structures, works full-automatically, and for most structure dimensions, is very fast. A Java-implementation of the algorithm called Seed is freely available at http://nano.tu-dresden.de/~jseiffert/Seed/. Finally, this work describes a structure building experiment, where a number of double crossover (DX) molecules were concatenated into a long chain. The sequence configuration for this experiment was generated by the developed program Seed showing the use of the presented algorithm.

Page generated in 0.0409 seconds