• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 111
  • 85
  • 33
  • 24
  • 12
  • 10
  • 10
  • 8
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 614
  • 105
  • 69
  • 49
  • 48
  • 40
  • 39
  • 33
  • 33
  • 32
  • 31
  • 31
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

DOES A DAY MAKE A DIFFERENCE? A COMPARISON OF HALF-DAY AND FULL-DAY KINDERGARTEN PROGRAMS IN TWO OHIO SCHOOL DISTRICTS

McIntosh, Candace L. 19 April 2006 (has links)
No description available.
32

Nearly Euclidean Thurston Maps and the Halfspace Theorem

Kim, Daniel Min 14 November 2016 (has links)
A Thurston map whose postcritical set consists of exactly four points and for which the local degree at each of its critical points is 2 is called textit{nearly Euclidean}. These maps were specified to parse Thurston's combinatorial characterization of rational functions. We determine an extension of the half-space theorem which provides an open hyperbolic half-space such that the negative reciprocal of any fixed slope value is excluded from the boundary of the half-space. / Master of Science
33

Half-Heusler Thermoelectric Materials and Modules

Kang, Han-Byul 29 August 2019 (has links)
High temperature waste heat recovery has been gaining attention in recent years as it forms one of the largest sources of available energy. A rapid development of thermoelectric (TE) materials that can directly convert heat into electricity through the Seebeck effect, opens promising pathway for harvesting the thermal energy from the surroundings. In order to harvest the high-quality waste heat at elevated temperature, excellent thermal and mechanical stability of the TE materials is critical for a sustainable energy harvesting. In this respect, half-Heusler (hH) alloys are one of the promising high-temperature TE materials due to their high dimensionless thermoelectric figure of merit (zT) along with excellent mechanical and thermal stability. This dissertation demonstrates novel hH compositions and microstructures for the waste heat recovery systems. Focus in the thesis is on development of high performance hH TE materials with excellent in-air thermal stability at high temperatures (>700K). This will allow manufacturing of high efficiency and durable high temperature thermoelectric generators (TEGs). In chapter 3 and 4, a comprehensive optimization of n-type MNiSn and p-type MCoSb (M = Hf, Zr, and Ti) compounds is investigated through systematic control of processing parameters during melting and sintering. The synthesis conditions were controlled to achieve the phase purity, desired microstructure and the enhanced charge-carrier transport. Optimized n-type and p-type compositions are found to exhibit zTmax ~ 1 at 773 K. Chapter 5 describes breakthrough in decoupling of TE parameters in n-type half-Heusler (hH) alloys through multi-scale nanocomposite architecture with tungsten nanoinclusions. The tungsten nanoparticles not only assist electron injection, thereby improving electrical conductivity, but also enhance the Seebeck coefficient through energy filtering effect. The microstructure comprises of disordered phases with feature sizes at multiple length scales, which assists in effective scattering of heat-carrying phonons over diverse mean-free-path ranges. Cumulatively, these effects are shown to result in outstanding thermoelectric performance of zTmax ~ 1.4 at 773 K and zTavg ~ 0.93 between 300 and 973 K. In order to deploy TE materials into a thermal energy conversion device, it is essential to understand the transformation behavior under thermal cycling at high temperatures. In-air thermal stability of the hH compositions is demonstrated in chapter 6. All the optimized compositions are found to be stable below 673 K in-air condition. The n-type MNiSn and p-type NbFeSb compounds were found to show good thermal stability even at higher temperatures (>773K), whereas MCoSb compounds did not exhibit similar level of stability. Building upon the improved material performance and thermal stability, uni-coupled TE generators are demonstrated that exhibit high power density of 13.81 W⸱cm-2 and conversion efficiency of 10.9 % under a temperature difference of 674 K. The uni-couple TEG device shows stable performance for more than 150 hours at 873 K in air. These results are very promising for deployment of TE materials in waste heat recovery systems. / Doctor of Philosophy / Based on the 2012 international energy agency (IEA) report, global waste heat energy is estimated to be in the range of 246 Exajoule (1 EJ = 10¹⁸ J). Tapping even small fraction of this wasted energy through thermal energy harvesting techniques will allow us to generate significant magnitude of green energy. Thermoelectrics (TEs) are one of the most promising thermal energy conversion materials as they offer cost-effective and environmentally friendly option with solid-state silent operation and scalability. Among many different options for high temperature TE materials, half-Heusler system is one of the leading candidates as it has the potential to provide high performance and thermal stability at temperatures as high as 873 K. The progress in developing practical half-Heusler materials has been limited for last two decades. Despite many publications, the maximum figure of merit (zT) of n-type half-Heusler materials has been stagnant (zT ~ 1.0). Further, there has been a lack of focus towards module development that can operate under realistic conditions. This dissertation provides comprehensive studies on novel thermoelectric compositions and nanocomposites that are suitable for manufacturing of high temperature modules. Microstructural architectures proposed here provide the ability to tailor electronic transport and phonon scattering beyond the commonly demonstrated regimes. Optimized materials were successfully implemented in efficient and stable thermoelectric generator exhibiting power density on the order of 13.81 W⸱cm⁻² , which is 1400 % higher than that of the fuel cell (~1 W⸱cm⁻² ).
34

Influence of Isoxaben Application Timing on Dissipation and Broadleaf Weed Control in Turf

Chandran, Rakesh S. 30 April 1997 (has links)
Isoxaben is a preemergence (PRE) broadleaf herbicide used in turf and ornamentals. Field, greenhouse, and laboratory research evaluated this herbicide for PRE control of selected broadleaves in turf, suspected postemergence (POST) herbicidal effects, and the influence of application timings and rates on soil residual. During seed germination in moist filter paper, isoxaben concentrations required for 50% inhibition of radicle growth (GR50) were 0.013, 0.010, 0.008, 0.008, and 0.007 ppm for dandelion, buckhorn plantain, white clover, black medic, and common lespedeza, respectively. In greenhouse experiments, isoxaben applied POST at 2.24 kg ai/ha suppressed the growth of Florida betony, black medic and white clover by 45, 65, and 66%, respectively, and reduced regrowth of Florida betony by 71%. In soil bioassays, yellow rocket control from isoxaben applied in fall was approximately 20 and 30% greater than spring-applied isoxaben at 3 and 6 MAT, respectively. Buckhorn plantain control from fall treatments at 3 MAT was approximately 15% higher than spring-applied isoxaben at 3 MAT. Application timings did not influence control of spotted spurge, a less sensitive weed. Isoxaben applied to turf in spring at 1.12 kg/ha provided > 90% control of buckhorn plantain, dandelion, and corn speedwell at 4 MAT. Fall applied isoxaben at the same rate provided total control of common chickweed, corn speedwell and henbit at 3 MAT and 80 to 90% control of white sweet clover and buckhorn plantain that germinated the following spring. Double (spring followed by fall) application of isoxaben to turf appeared to enhance broadleaf weed control in some instances. Dissipation of isoxaben in the top 3.8 cm of a Ross silt-loam soil as affected by spring, fall, and spring followed by fall applications was determined using high performance liquid chromatography (HPLC) analysis. Isoxaben residues in soil decreased by 55 and 92% by 3 and 6 MAT, respectively, for spring teatments, and decreased 29 and 52% by 3 and 6 MAT for fall treatments, respectively. A soil-bioassay study correlated well with chemical analysis of isoxaben residues, as the correlation coefficients were 0.85 and 0.89 for yellow rocket and buckhorn plantain, respectively. / Ph. D.
35

Mechanistic Enzymology of Flavin-dependent Catalysis in Bacterial D-Arginine Dehydrogenase and Choline Oxidase

Gannavaram, Swathi 12 August 2014 (has links)
D-Arginine dehydrogenase (DADH) catalyzes the oxidation of D-arginine to imino arginine using FAD as the cofactor. The enzyme is part of a recently discovered two-enzyme complex from Pseudomonas aeruginosa involved in arginine utilization. Function of the enzyme within the organism is unknown. Work on this enzyme has been undertaken to understand the structure as well as its reaction mechanism so as to eventually assign a function to the enzyme within the physiological context. In the reductive half-reaction 2 e- and 1 H+ are transferred from the amino acid substrate to FAD cofactor. In the oxidative half-reaction the reducing equivalents from the FAD cofactor are passed to an electron acceptor that is yet to be discovered. The enzyme has been established to have no reactivity with O2. Choline oxidase (CHO) from Arthrobacter globiformis is a well characterized member of Glucose-Methanol-Choline Superfamily that reacts with molecular O2. It catalyzes the oxidation of choline to glycine betaine mediated by betaine aldehyde intermediate using FAD as the cofactor and O2 as the oxidant to regenerate oxidized FAD for further reaction. Glycine betaine, the product of the reaction is an important osmolyte that regulates nutrients for plants under stressful conditions. Therefore it is of commercial interest to genetically engineer crops that do not typically possess competent pathways for glycine betaine synthesis. In this dissertation molecular details concerning the reductive half-eaction of DADH and oxidative half-reaction of CHO have been studied using a combination of steady state kinetics, rapid kinetics, pH, multiple substrates, mutagenesis, substrate deuterium and solvent isotope effects, viscosity effects or computational approaches. In DADH, the oxidation of amino acid substrate by FAD has been shown to most likely proceed via hydride transfer mechanism in the reductive half-reaction with Glu87, Tyr53, Tyr249 and His48 emerging as key players in substrate binding, catalysis or for up keeping the integrity of the FAD cofactor. In CHO, the oxidative half-reaction proceeds without stabilization of any reaction intermediates with H atom from reduced FAD and H+ from solvent or solvent exchangeable site occurring in the same kinetic step.
36

Deformation mechanisms of nanostructured thermoelectric alloys / Mécanismes de déformations de matériaux thermoélectriques nanostructurés

Aumand, Matthieu 12 September 2018 (has links)
L’amélioration de la figure de mérite ZT des matériaux thermoélectriques (TE) est actuellement entreprise via des procédés de métallurgie, tels que la nanostructuration et l’introduction contrôlée de dislocations. De tels niveaux de complexité de microstructure soulèvent la problématique du comportement mécanique associé. En effet, malgré les valeurs de dureté et module d’élasticité connues pour la plupart des matériaux TE, rares sont les données sur les mécanismes de déformation. Portant sur le Half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2 de type p, notre étude multi-échelle propose de caractériser les mécanismes de déformation de cet alliage. Les expérimentations menées aux échelles macroscopique, mésoscopique, et microscopique sont pensées pour déclencher puis examiner les mécanismes de plasticité. Les tests en compression sur échantillons massifs dans un environnement de pression de confinement et température ont aboutis à une rupture exclusivement fragile. Les mécanismes de rupture sont identifiés comme associés une propagation de fissure intra- et inter granulaire, dépendant de la taille de grain rencontrée par le front de fissure. La méthode « indentation toughness » à l’échelle mésoscopique permet l’insertion de fissures, où les analyses MET en front de fissure confirment une abscence d’activité de dislocations, également confirmé par 3D-EBSD. À l’échelle microscopique, les données de compression de micro-pilliers ainsi que les observations de faciès de fracture sont comparable avec les échantillons massifs. Ces résultats peuvent être utilisés comme guide pour produire des matériaux TE plus résistants à la fissuration. / Increasing the figure of merit ZT of thermoelectric (TE) alloys is a challenge that is currently attempted through various metallurgy methods, including nanostructuring and dislocation engineering. Microstructures with such level of complexity raises questions about the mechanical reliability of these new materials. Indeed, despite the values of hardness and elastic modulus known for the clear majority of TE materials, the data on deformation mechanisms are still rare. Focusing on the nanostructured p-type half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, our multi-scale study aims to analyze the deformation mechanisms. Experiments conducted at macro-, meso- and micro-scale are designed to trigger and assess plasticity mechanisms. Compression testing on bulk samples subject to a confining pressure environment and temperature leads to an exclusive brittle failure. The mixed-mode failure mechanisms involve switching between intra- and inter-granular crack propagation, depending on the grain size met by the crack tip. Indentation toughness at meso-scale generates cracks, while TEM analysis of the crack tip area confirms no dislocation activity and 3D-EBSD technique confirms the mixed crack propagation behavior. At micro-scale, micro-pillar compression stress-strain curves and failure mechanisms are comparable with bulk samples testing analysis. These results can be used to provide design guidelines for more crack-resistant TE alloys.
37

Příprava syndiotaktického polystyrenu pomocí monocyklopentadienylových komplexů titanu / Tha synthesis of syndiotactic polystyrene using monocyclopentadienyl titanium complexes

Svačina, Zdeněk January 2008 (has links)
A series of four novel halosilylsubstitued monocyclopentadienyl titanium complexes; [Si(CH3)2FCp]TiCl3 – FSiTTC, [Si(CH3)F2Cp]TiCl3 F2SiTTC, [Si(CH3)Cl2Cp]TiCl3 - Cl2SiTTC, [Si(CH3)2ClCp]TiCl3 - ClSiTTC was tested as catalytic precursors for polymerization of styrene in toluene. The maximum polymerization activity was achieved after polymerization period of 20 minutes. Activity decreased in order FSiTTC/MAO > F2SiTTC/MAO > Cl2SiTTC/MAO > ClSiTTC /MAO. Prepared polystyrenes were characterized using 13C NMR spectroscopy and DSC analysis. Syndiotacticity index of obtained PSs was determined by means of Soxhlet extraction with butan-2-one as solvent. Syndiotacticity indexes of PSs obtained by investigated catalysts possessed higher values then those obtained by standard catalysts (CpTiCl3 a Cp*TiCl3) at comparable polymerization conditions.
38

A Study of the Winter Foraging Habits of Mule Deer in Enclosures in Northern Utah With a Test of the Half-And-Half Sampling Technique

Flook, Donald R. 01 May 1955 (has links)
Mule deer provide recreational bunting to a large number of sportsmen in Utah, and also have a high aesthetic value. Prior to settlement, deer are believed to have wintered in the valleys and lower foothill areas. However, in northern Utah agricultural development bas removed many valleys and lower foothill areas from the available winter range. The winter deer range in this area has therefore been restricted to a relatively small area of foothill country, and low elevation mountain slopes and benches.
39

Post-Transcriptional Control of RIPK1 in Macrophage Inflammation and Necroptosis

Zhou, Zier 08 December 2022 (has links)
Receptor-interacting protein kinase 1 (RIPK1) is a major upstream mediator of inflammation and cell death. These processes are key to common inflammatory diseases such as atherosclerosis, where macrophages play an important role in their progression. Closely linked to the expression of downstream genes, long non-coding RNAs (lncRNAs) are critical to controlling cellular processes in health and disease. As post-transcriptional regulatory mechanisms for RIPK1 are largely unknown, this project seeks to study the stability of Ripk1 mRNA and RIPK1 protein, along with Ripk1 mRNA interactions with relevant lncRNAs under various conditions. Using transcription and translation inhibitors, we determined that both Ripk1 mRNA and RIPK1 protein are relatively unstable with half-lives of approximately 3 h. Their turnover in macrophages is further influenced by the timing and duration of inflammation. We also implemented a novel RNA pull-down procedure to capture Ripk1 mRNA and attached lncRNAs for next-generation sequencing. Through differential expression analysis, we discovered significant upregulation of known lncRNA AC125611 and novel lncRNA MSTRG.5894.1 in Ripk1-targeted samples subject to inflammation. MSTRG.7477.1 was upregulated during necroptosis, while MSTRG.5684.5 was upregulated during both inflammation and necroptosis. GapmeR-mediated knockdowns of AC125611 and MSTRG.5684.5 under inflammatory conditions resulted in decreased Ripk1 mRNA expression and RIPK1 protein expression, respectively. Meanwhile, MSTRG.7477.1 knockdowns were connected to decreased RIPK1 at both the mRNA and protein levels. Our research ultimately advances the current understanding of RIPK1 regulation by focusing on Ripk1 mRNA-lncRNA associations and turnover of its mRNA and protein in macrophages, paving the way for future investigations into their capacity to act as therapeutic targets.
40

The Drivers of Success in the NFL: Differences in Factors Affecting the Probability of Winning Based on First Half Performance

Alleva, Zach 01 January 2016 (has links)
This paper explores how changing various end game statistics effects a given teams probability of winning a game in the National Football League (NFL). Data from the 2000-2016 NFL seasons is split into two subsets, one for teams winning at halftime, another for losing teams. Using this data an empirical model is estimated to study how the determinants of a team’s success differ between the two sets of data. Overall, the factors which determine a team’s outcome are consistent between the two subsets, varying primarily by magnitude of the effect.

Page generated in 0.0841 seconds