• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine Learning in Derivatives Trading : Does it Really Work? / Maskininlärning inom Derivathandel : Fungerar det verkligen?

Alzghaier, Samhar, Azrak, Oscar January 2024 (has links)
The rapid advancement of artificial intelligence (AI) has broadened its applications across various sectors, with finance being a prominent area of focus. In financial trading, AI is primarily utilized to detect patterns and facilitate trading decisions. However, challenges such as noisy data, poor model generalization, and overfitting due to high variability in underlying assets continue to hinder its effectiveness. This study introduces a framework that builds on previous research at the intersection of AI and finance, implemented at AP1. It outlines the benefits and limitations of applying AI to trade derivatives rather than single company stocks and serves as a guide for building such trading algorithms. Furthermore, the research identifies an under-explored niche at the intersection of AI and derivative trading. By developing and applying this framework, the study not only addresses this gap but also evaluates the role of AI algorithms in enhancing derivative trading strategies, demonstrating their potential and limitations within this domain. / Den snabba utvecklingen av artificiell intelligens (AI) har breddat dess tillämpningar över olika sektorer, med finans som ett framträdande fokusområde. Inom finansiell handel används AI främst för att upptäcka mönster och underlätta handelsbeslut. Men utmaningar som bullriga data, dålig modellgeneralisering och överanpassning på grund av stor variation i underliggande tillgångar fortsätter dock att hindra dess effektivitet. Denna studie introducerar ett ramverk som bygger på tidigare forskning i skärningspunkten mellan AI och finans, implementerad på AP1. Den beskriver fördelarna och begränsningarna med att tillämpa AI för handel med derivat snarare än aktier i enskilda företag och fungerar som en guide för att bygga sådana handelsalgoritmer. Dessutom identifierar forskningen en underutforskad nisch i skärningspunkten mellan AI och derivathandel. Genom att utveckla och tillämpa detta ramverk tar studien inte bara upp denna lucka utan utvärderar också rollen av AI-algoritmer för att förbättra derivathandelsstrategier, och visar deras potential och begränsningar inom denna domän.

Page generated in 0.0697 seconds