• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 25
  • 9
  • 8
  • 6
  • 1
  • Tagged with
  • 85
  • 26
  • 21
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Fatigue strength of engineering materials : the influence of environment and porosity

Linder, Jan January 2006 (has links)
The objective of this work was to use LEFM in order to assess the detrimental influence of surrounding chloride-containing environments for stainless steels, hardened steel as well as for a cast aluminium alloy. An additional aim was also to use LEFM to assess the influence of porosity on the fatigue properties for different commercial cast aluminium alloys and manufacturing methods. The environmental influence on fatigue performance was mainly evaluated from fatigue crack growth measurements using compact tension (CT) specimens. In addition, fatigue performance in the high cycle regime was studied using spot welded specimens and smooth specimens. Corrosion fatigue tests for stainless steels were performed in different chloride-containing aqueous solutions and compared to the behaviour in air. Variables, which have been investigated, included temperature, redox potential and fatigue test frequency. The environmental influence on fatigue performance has also been compared to localised corrosion properties. Fatigue crack propagation rates were found to be higher in 3% NaCl than in air for all stainless steels investigated. The highest alloyed austenitic steel, 654SMO, showed the least influence of the environment. For duplex stainless steels the environment enhanced fatigue crack propagation rate to a higher degree than for austenitic stainless steels. This is explained by a material-dependent corrosion fatigue mechanism. In the high cycle regime, fatigue properties for spot welded stainless steels specimens were found to be decreased between 30%-40% due to the presence of 3% NaCl. For the hardened steel 100CrMnMo8 a fracture mechanics approach was employed for prediction of corrosion fatigue properties. In this model corrosion pit growth rate and the threshold stress intensity factor for fatigue crack propagation are needed as input parameters. For the high pressure die cast aluminium alloy the environmental influence of fatigue initiation through pre-exposure of smooth specimens was studied. Depending on environment used for pre-exposure, fatigue strength was found to be reduced by up to 50 % compared to the fatigue strength in air. Fatigue strength reduction was clearly associated to corrosion pits in the aluminium material. A fracture mechanics model was further successfully used to predict the environmental influence. The influence of porosity on the fatigue strength for the cast aluminium alloys tested has been described by a Kitagawa diagram. In design, the Kitagawa diagram can be used to predict the largest allowable pore size if the load situation in the component is known. The size of the porosity could either be evaluated directly from x-ray images or from metallographic prepared cross-sections using a method of extreme value analysis / QC 20100907
52

SiGe BiCMOS circuit and system design and characterization for extreme environment applications

England, Troy Daniel 07 July 2011 (has links)
This thesis describes the architecture, verification, qualification, and packaging of a 16-channel silicon-germanium (SiGe) Remote Electronics Unit (REU) designed for use in extreme environment applications encountered on NASA's exploration roadmap. The SiGe REU was targeted for operation outside the protective electronic "vaults" in a lunar environment that exhibits cyclic temperature swings from -180ºC to 120ºC, a total ionizing dose (TID) radiation level of 100 krad, and heavy ion exposure (single event effects) over the mission lifetime. The REU leverages SiGe BiCMOS technological advantages and design methodologies, enabling exceptional extreme environment robustness. It utilizes a mixed-signal Remote Sensor Interface (RSI) ASIC and an HDL-based Remote Digital Control (RDC) architecture to read data from up to 16 sensors using three different analog channel types with customizable gain, current stimulus, calibration, and sample rate with 12-bit analog-to-digital conversion. The SiGe REU exhibits excellent channel sensitivity throughout the temperature range, hardness to at least 100 krad TID exposure, and single event latchup immunity, representing the cutting edge in cold-capable electronic systems. The SiGe REU is the first example within a potential paradigm shift in space-based electronics.
53

An investigation of means of mitigating alkali-silica reaction in hardened concrete

Markus, Reid Patrick 21 November 2013 (has links)
This research project, funded by the Federal Highway Administration (FHWA Project DTFH61-02-C-0097), focuses mainly on alkali-silica reaction (ASR) and techniques to mitigate the effects of alkali-silica reaction in hardened concrete. A large portion of this report discusses the construction and design of an outdoor exposure site built at the University of Texas at Austin where the goal was to cast field representative concrete elements with laboratory precision and expose them to real environmental conditions. The elements were monitored for expansion and deterioration. At discrete expansion levels a range of mitigation methods were implemented on the structures. After the concrete elements were treated, long-term monitoring was conducted to determine the best approach to provide effective suppression of alkali-silica reaction in the various element types. / text
54

Transistor level automatic generation of radiation-hardened circuits / Geração automática de circuitos tolerantes a radiação no nível de transistores

Lazzari, Cristiano January 2007 (has links)
Tecnologias submicrônicas (DSM) têm inserido novos desafios ao projeto de circuitos devido a redução de geometrias, redução na tensão de alimentação, aumento da freqüência e aumento da densidade de lógica. Estas características reduzem significativamente a confiabilidade dos circuitos integrados devido a suscetibilidade a efeitos como crosstalk e acoplamento de substrato. Ainda, os efeitos da radiação são mais significantes devido as partículas com baixa energia começam a ser um problema em tecnologias DSM. Todas essas características enfatizam a necessidade de novas ferramentas de automação. Um dos objetivos desta tese é desenvolver novas ferramentas aptas a lidar com estes desafios. Esta tese é dividida em duas grandes contribuições. A primeira está relacionada com o desenvolvimento de uma nova metodologia com o objetivo de gerar circuitos otimizados em respeito ao atraso e ao consumo de potência. Um novo fluxo de projeto é apresentado na qual o circuito é otimizado no nível de transistor. Esta metodologia permite otimizar cada transistor de acordo com as capacitâncias associadas. Diferente da metodologia tradicional, o leiaute é gerado sob demanda depois do processo de otimização de transistores. Resultados mostram melhora de 11% em relação ao atraso dos circuitos e 30% de redução no consumo de potência em comparação à metodologia tradicional. A segunda contribuição está relacionada com o desenvolvimento de técnicas de geração de circuitos tolerantes a radiação. Uma técnica CWSP é usada para aplicar redundância temporal em elementos seqüenciais. Esta técnica apresenta baixa utilização de área, mas as penalidades no atraso estão totalmente relacionadas com a duração do pulso que se planeja atenuar. Além disso, uma nova metodologia de dimensionamento de transistores para falhas transientes é apresentada. A metodologia de dimensionamento é baseada em um modelo analítico. O modelo considera independente blocos de transistores PMOS e NMOS. Então, somente transistores diretamente relacionados à atenuação são dimensionados. Resultados mostram área, atraso e consumo de potência reduzido em comparação com as técnicas CWSP e TMR, permitindo o desenvolvimento de circuitos com alta freqüência. / Deep submicron (DSM) technologies have increased the challenges in circuit designs due to geometry shrinking, power supply reduction, frequency increasing and high logic density. The reliability of integrated circuits is significantly reduced as a consequence of the susceptibility to crosstalk and substrate coupling. In addition, radiation effects are also more significant because particles with low energy, without importance in older technologies, start to be a problem in DSM technologies. All these characteristics emphasize the need for new Electronic Design Automation (EDA) tools. One of the goals of this thesis is to develop EDA tools able to cope with these DSM challenges. This thesis is divided in two major contributions. The first contribution is related to the development of a new methodology able to generate optimized circuits in respect to timing and power consumption. A new design flow is proposed in which the circuit is optimized at transistor level. This methodology allows the optimization of every single transistor according to the capacitances associated to it. Different from the traditional standard cell approach, the layout is generated on demand after a transistor level optimization process. Results show an average 11% delay improvement and more than 30% power saving in comparison with the traditional design flow. The second contribution of this thesis is related with the development of techniques for radiation-hardened circuits. The Code Word State Preserving (CWSP) technique is used to apply timing redundancy into latches and flipflops. This technique presents low area overhead, but timing penalties are totally related with the glitch duration is being attenuated. Further, a new transistor sizing methodology for Single Event Transient (SET) attenuation is proposed. The sizing method is based on an analytic model. The model considers independently pull-up and pull-down blocks. Thus, only transistors directly related to the SET attenuation are sized. Results show smaller area, timing and power consumption overhead in comparison with TMR and CWSP techniques allowing the development of high frequency circuits, with lower area and power overhead.
55

Transistor level automatic generation of radiation-hardened circuits / Geração automática de circuitos tolerantes a radiação no nível de transistores

Lazzari, Cristiano January 2007 (has links)
Tecnologias submicrônicas (DSM) têm inserido novos desafios ao projeto de circuitos devido a redução de geometrias, redução na tensão de alimentação, aumento da freqüência e aumento da densidade de lógica. Estas características reduzem significativamente a confiabilidade dos circuitos integrados devido a suscetibilidade a efeitos como crosstalk e acoplamento de substrato. Ainda, os efeitos da radiação são mais significantes devido as partículas com baixa energia começam a ser um problema em tecnologias DSM. Todas essas características enfatizam a necessidade de novas ferramentas de automação. Um dos objetivos desta tese é desenvolver novas ferramentas aptas a lidar com estes desafios. Esta tese é dividida em duas grandes contribuições. A primeira está relacionada com o desenvolvimento de uma nova metodologia com o objetivo de gerar circuitos otimizados em respeito ao atraso e ao consumo de potência. Um novo fluxo de projeto é apresentado na qual o circuito é otimizado no nível de transistor. Esta metodologia permite otimizar cada transistor de acordo com as capacitâncias associadas. Diferente da metodologia tradicional, o leiaute é gerado sob demanda depois do processo de otimização de transistores. Resultados mostram melhora de 11% em relação ao atraso dos circuitos e 30% de redução no consumo de potência em comparação à metodologia tradicional. A segunda contribuição está relacionada com o desenvolvimento de técnicas de geração de circuitos tolerantes a radiação. Uma técnica CWSP é usada para aplicar redundância temporal em elementos seqüenciais. Esta técnica apresenta baixa utilização de área, mas as penalidades no atraso estão totalmente relacionadas com a duração do pulso que se planeja atenuar. Além disso, uma nova metodologia de dimensionamento de transistores para falhas transientes é apresentada. A metodologia de dimensionamento é baseada em um modelo analítico. O modelo considera independente blocos de transistores PMOS e NMOS. Então, somente transistores diretamente relacionados à atenuação são dimensionados. Resultados mostram área, atraso e consumo de potência reduzido em comparação com as técnicas CWSP e TMR, permitindo o desenvolvimento de circuitos com alta freqüência. / Deep submicron (DSM) technologies have increased the challenges in circuit designs due to geometry shrinking, power supply reduction, frequency increasing and high logic density. The reliability of integrated circuits is significantly reduced as a consequence of the susceptibility to crosstalk and substrate coupling. In addition, radiation effects are also more significant because particles with low energy, without importance in older technologies, start to be a problem in DSM technologies. All these characteristics emphasize the need for new Electronic Design Automation (EDA) tools. One of the goals of this thesis is to develop EDA tools able to cope with these DSM challenges. This thesis is divided in two major contributions. The first contribution is related to the development of a new methodology able to generate optimized circuits in respect to timing and power consumption. A new design flow is proposed in which the circuit is optimized at transistor level. This methodology allows the optimization of every single transistor according to the capacitances associated to it. Different from the traditional standard cell approach, the layout is generated on demand after a transistor level optimization process. Results show an average 11% delay improvement and more than 30% power saving in comparison with the traditional design flow. The second contribution of this thesis is related with the development of techniques for radiation-hardened circuits. The Code Word State Preserving (CWSP) technique is used to apply timing redundancy into latches and flipflops. This technique presents low area overhead, but timing penalties are totally related with the glitch duration is being attenuated. Further, a new transistor sizing methodology for Single Event Transient (SET) attenuation is proposed. The sizing method is based on an analytic model. The model considers independently pull-up and pull-down blocks. Thus, only transistors directly related to the SET attenuation are sized. Results show smaller area, timing and power consumption overhead in comparison with TMR and CWSP techniques allowing the development of high frequency circuits, with lower area and power overhead.
56

Análise de superfícies fresadas por diferentes estratégias em aço AISI H13 endurecido

Nicola, Gerson Luiz 25 April 2008 (has links)
Na usinagem de acabamento de superfícies complexas de forma livre, comumente empregada na fabricação de moldes e matrizes, o conhecimento das condições de corte e estratégias adequadas para o fresamento de material endurecido podem proporcionar a obtenção de superfícies de melhor qualidade e controle dimensional, além de uma redução significativa nos tempos e custos de fabricação. O objetivo deste trabalho é analisar a formação da textura no fresamento de materiais endurecidos, através da avaliação quantitativa e qualitativa, quanto a rugosidade, regularidade e formação da superfície. Para estudar este fenômeno foi empregada uma ferramenta de ponta esférica com inserto intercambiável. Os experimentos foram realizados utilizando-se corpos-de-prova de aço AISI H13 na dureza de 54 HRC, posicionados a uma inclinação de 60°, empregando-se condições de corte fixas e quatro diferentes estratégias de usinagem, com trajetórias de corte horizontal e vertical, ascendente ou descendente em relação ao plano inclinado. Para sua caracterização, as superfícies usinadas foram submetidas à medição de rugosidade e métodos distintos para a visualização e obtenção de imagens da textura, sendo eles: microscopia óptica, microscopia eletrônica de varredura (MEV) e microscopia de força atômica (AFM). Foi possível constatar através dos valores de rugosidade e imagens topográficas das superfícies usinadas que as texturas resultantes mostram nitidamente a influência da estratégia de corte empregada, caracterizando-se distintamente. As texturas analisadas revelam um padrão uniforme e repetitivo, com exceção à estratégia vertical ascendente (VS), que originou uma textura irregular e indefinida, onde as marcas de passagem da ferramenta não se apresentam nítidas. Para esta condição observou-se na superfície usinada a presença de material deformado e aderido, apresentando a maior rugosidade, sendo que as menores rugosidades foram medidos para a estratégia vertical descendente (VD). / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-05-20T17:28:08Z No. of bitstreams: 1 Dissertacao Gerson Luiz Nicola.pdf: 18583662 bytes, checksum: 3d927824543520a3c9152ab459406152 (MD5) / Made available in DSpace on 2014-05-20T17:28:08Z (GMT). No. of bitstreams: 1 Dissertacao Gerson Luiz Nicola.pdf: 18583662 bytes, checksum: 3d927824543520a3c9152ab459406152 (MD5) / In the final milling process of free form surfaces, commonly employed in the production of molds and dies, the knowledge of the cutting conditions and a strategy for choosing adequate processing routes in the milling of hardened materials can provide superior surface quality and dimensional control and a significant reduction in the manufacturing times and costs. The objective of this work is to understand the texture formation in the milling of hardened materials, through the quantitative and qualitative evaluation of the surface roughness, as well as the formation and the regularity of the surfaces. The tool used in these experiments was an interchangeable insert tungsten carbide, ball nose end mill. AISI H13 steel with a final hardness of 54 HRC was used throughout the experimental work. The workpiece was fixed on a device with an inclination of 60 degrees. The same cutting conditions were used for all the tests and four cutting strategies were considered, as defined by the trajectory of the tool, upward and downward, in the horizontal and vertical directions. To characterize the machined surfaces, the roughness was measured and other different methods for the visualization of the surface texture were employed, such as, the optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was possible to observe, through the values of roughness and the topographic images of the machined areas, that the resulting textures clearly show the influence of the cutting strategy employ, distinctly characterized. The textures analyzed show a consistent and repetitive pattern, except the vertical upward strategy (VS) that resulted in an irregular and undefined texture, where the tool marks are unclear. For this condition the presence of plastically deformed material and acceded were observed in the machined surface, with presented the highest roughness value. The lowest roughness values were measured for the downward vertical strategy (VD).
57

Análise de superfícies fresadas por diferentes estratégias em aço AISI H13 endurecido

Nicola, Gerson Luiz 25 April 2008 (has links)
Na usinagem de acabamento de superfícies complexas de forma livre, comumente empregada na fabricação de moldes e matrizes, o conhecimento das condições de corte e estratégias adequadas para o fresamento de material endurecido podem proporcionar a obtenção de superfícies de melhor qualidade e controle dimensional, além de uma redução significativa nos tempos e custos de fabricação. O objetivo deste trabalho é analisar a formação da textura no fresamento de materiais endurecidos, através da avaliação quantitativa e qualitativa, quanto a rugosidade, regularidade e formação da superfície. Para estudar este fenômeno foi empregada uma ferramenta de ponta esférica com inserto intercambiável. Os experimentos foram realizados utilizando-se corpos-de-prova de aço AISI H13 na dureza de 54 HRC, posicionados a uma inclinação de 60°, empregando-se condições de corte fixas e quatro diferentes estratégias de usinagem, com trajetórias de corte horizontal e vertical, ascendente ou descendente em relação ao plano inclinado. Para sua caracterização, as superfícies usinadas foram submetidas à medição de rugosidade e métodos distintos para a visualização e obtenção de imagens da textura, sendo eles: microscopia óptica, microscopia eletrônica de varredura (MEV) e microscopia de força atômica (AFM). Foi possível constatar através dos valores de rugosidade e imagens topográficas das superfícies usinadas que as texturas resultantes mostram nitidamente a influência da estratégia de corte empregada, caracterizando-se distintamente. As texturas analisadas revelam um padrão uniforme e repetitivo, com exceção à estratégia vertical ascendente (VS), que originou uma textura irregular e indefinida, onde as marcas de passagem da ferramenta não se apresentam nítidas. Para esta condição observou-se na superfície usinada a presença de material deformado e aderido, apresentando a maior rugosidade, sendo que as menores rugosidades foram medidos para a estratégia vertical descendente (VD). / In the final milling process of free form surfaces, commonly employed in the production of molds and dies, the knowledge of the cutting conditions and a strategy for choosing adequate processing routes in the milling of hardened materials can provide superior surface quality and dimensional control and a significant reduction in the manufacturing times and costs. The objective of this work is to understand the texture formation in the milling of hardened materials, through the quantitative and qualitative evaluation of the surface roughness, as well as the formation and the regularity of the surfaces. The tool used in these experiments was an interchangeable insert tungsten carbide, ball nose end mill. AISI H13 steel with a final hardness of 54 HRC was used throughout the experimental work. The workpiece was fixed on a device with an inclination of 60 degrees. The same cutting conditions were used for all the tests and four cutting strategies were considered, as defined by the trajectory of the tool, upward and downward, in the horizontal and vertical directions. To characterize the machined surfaces, the roughness was measured and other different methods for the visualization of the surface texture were employed, such as, the optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was possible to observe, through the values of roughness and the topographic images of the machined areas, that the resulting textures clearly show the influence of the cutting strategy employ, distinctly characterized. The textures analyzed show a consistent and repetitive pattern, except the vertical upward strategy (VS) that resulted in an irregular and undefined texture, where the tool marks are unclear. For this condition the presence of plastically deformed material and acceded were observed in the machined surface, with presented the highest roughness value. The lowest roughness values were measured for the downward vertical strategy (VD).
58

Optimisation des caractéristiques rhéologiques, mécaniques et thermiques des bétons à base de granulats recyclés avec différents couples ciment/adjuvant / Optimization of rheological, mechanical and thermal characteristics of concrete with recycled aggregates with different couple cement / adjuvant

Tahar, Zine-el-abidine 08 November 2016 (has links)
Devant le besoin croissant de ressources en matériaux de construction ainsi que les exigences en terme de préservation de l’environnement dans une vision de développement durable, il est devenu nécessaire d'étudier toutes les possibilités de réutilisation et de valorisation des déchets et des sous-produits industriels, notamment dans le domaine de la construction et des travaux publics.Les mortiers et bétons confectionnés à partir de granulats recyclés ont fait l’objet de nombreuses études. Toutefois, aucune règle générale n’a encore été dégagée pour quantifier l’influence de telles substitutions sur leurs propriétés rhéologiques et mécaniques. L’élargissement de l’utilisation des bétons comportant des granulats recyclés, dont les propriétés physico-chimiques sont différentes des bétons à base de granulats naturels, est inévitablement cautionné par une maitrise accrue, d’une part, de leurs propriétés mécaniques et d’autre part, de leur mise en œuvre.L’objectif de ce travail est de quantifier l’influence de la nature et du dosage des gravillons et du sable recyclé sur les propriétés rhéologiques et mécaniques.Pour y parvenir, une campagne d’essais a été menée sur des bétons confectionnés avec différents taux de substitutions (sur le sable et les granulats) et avec différents couples ciments/adjuvants. En ce qui concerne les propriétés rhéologiques, les paramètres mesurés sont les suivants : le seuil de cisaillement, la viscosité plastique, l’ouvrabilité, la teneur en air et la masse volumique. De plus, afin de suivre l’évolution de ces propriétés dans le temps les essais ont été réalisés à différents âges (à la sortie du malaxeur, 30 minutes, 60 minutes et 90 minutes après la fin du malaxage). En ce qui concerne les propriétés mécaniques, des essais de compressions ont été effectués à 1 jour, 7 jours et 28 jours. Les propriétés des bétons ainsi confectionnés ont été comparées à un béton témoin.Les résultats montrent que les propriétés des bétons et des MBE (Mortier de Béton Equivalent) à base de granulats recyclés dépendent du couple ciment/adjuvant et du dosage de substitution en granulats recyclés. Cela signifie qu'il existe effectivement une influence du granulat recyclé sur la compatibilité (équilibre physico-chimique) du couple ciment/adjuvant. Cette influence est plus remarquable sur le sable que sur les gravillons. Les résultats montrent aussi que pour des bétons à base de granulats recyclés, plus le pourcentage de substitution est élevé et plus le seuil de cisaillement et la viscosité plastique augmentent, la résistance à la compression, quant à elle, diminue.Mots clés : béton, gravillons recyclés, sable recyclé, rhéologie, maniabilité. / With the growing need of building material resources and requirements in terms of environmental protection in a vision of sustainable development, it has become necessary to explore all possibilities for the reuse and recycling of and industrial waste products, especially in the field of construction and public works.Mortars and concrete made from recycled aggregates were the subject of numerous studies. However, no general rule has been identified to quantify the influence of such substitutions on their rheological and mechanical properties. Expanding the use of concrete containing recycled aggregates whose physicochemical properties are different from concrete with natural aggregates, is inevitably backed by increased mastery, on the one hand, of their mechanical properties, and secondly their implementation.The objective of this work is to quantify the influence of the nature and dosage of recycled gravel and sand on the rheological and mechanical properties.To do so, a test campaign was conducted on concrete made with different percentages of substitutions (on the sand and aggregates) and with different combination cements / admixtures. Regarding the rheological properties, the measured parameters are: shear threshold, plastic viscosity, workability, air content and density. Furthermore, in order to follow the evolution of these quantities in the time the tests were carried out at different ages (at the outlet of the mixer, 30 minutes, 60 minutes and 90 minutes after the end of mixing). Regarding the mechanical properties, compression tests were performed at 1 day, 7 days and 28 days. The properties of these concretes were compared to a control concrete.The results show that the properties of recycled concrete aggregates and ECM (Equivalent Concrete Mortar) depend on the couple cement / admixture and the level of substitution on recycled aggregates. This means that there is indeed an influence of recycled aggregate on the compatibility (phisico-chemical equilibrium) of the couple cement / admixture. This influence is most notable on the sand than on gravel. The results also show that for concrete based on recycled aggregate, the higher the percentage of substitution increases, the higher the yield stress and plastic viscosity and the lower the resistance to compression.Keywords: concrete, recycled aggregates, recycled sand, rheology, workability.
59

Obrábění kalených ocelí / Machining of hardened steels

Veselý, Ondřej January 2021 (has links)
Diploma thesis on Machining hardened steels is focused on the analysis of longitudinal turning of hardened steel 14 109 by using a tool from PKNB in terms of measuring the force load using a dynamometer and then evaluating the surface quality. The theoretical part deals with the issue of turning technology, cutting materials and heat treatment of steel. In the practical part, the influence of cutting conditions on the resulting values was assessed during the experiment. Twelve samples with different combinations of cutting conditions were tested, then was selected a sample that met the criterion of combining minimum cutting forces values and surface quality. The experiment shows that force load values can be achieved twice less by combining cutting conditions with an appropriate combination.
60

Design and Implementation of a Radiation Hardened GaN Based Isolated DC-DC Converter for Space Applications

Turriate, Victor Omar 19 November 2018 (has links)
Power converters used in high reliability radiation hardened space applications trail their commercial counterparts in terms of power density and efficiency. This is due to the additional challenges that arise in the design of space rated power converters from the harsh environment they need to operate in, to the limited availability of space qualified components and field demonstrated power converter topologies. New radiation hardened Gallium Nitride (GaN) Field Effect Transistors (FETs) with their inherent radiation tolerance and superior performance over Silicon Power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are a promising alternative to improve power density and performance in space power converters. This thesis presents the considerations and design of a practical implementation of the Phase Shifted Full Bridge DC-DC Isolated converter with synchronous rectification for space applications. Recently released radiation hardened GaN FETs were used in the Full Bridge and synchronous rectifier power stages. A survey outlining the benefits of new radiation hardened GaN FETs for space power applications compared to current radiation hardened power MOSFETs is included. In addition, this work presents the overall design process followed to design the DC-DC converter power stage, as well as a comprehensive power loss analysis. Furthermore, this work includes details to implement a conventional hard-switched Full Bridge DC-DC converter for this application. An efficiency and component stress comparison was performed between the hard-switched Full Bridge design and the Phase Shifted Full Bridge DC-DC converter design. This comparison highlights the benefits of phase shift modulation (PSM) and zero voltage switching (ZVS) for GaN FET applications. Furthermore, different magnetic designs were characterized and compared for efficiency in both converters. The DC-DC converters implemented in this work regulate the output to a nominal 20 V, delivering 500 W from a nominal 100 V DC Bus input. Complete fault analysis and protection circuitry required for a space-qualified implementation is not addressed by this work. / MS / Recently released radiation-hardened Gallium Nitride (GaN) Field Effect Transistors (FETs) offer the opportunity to increase efficiency and power density of space DC-DC power converters. The current state of the art for space DC-DC power conversion trails their commercial counterparts in terms of power density and efficiency. This is mainly due to two factors. The first factor is related to the additional challenges that arise in the design of space rated power converters from the harsh environment they need to operate in, to the limited availability of space qualified components and field demonstrated converter topologies. The second factor lies in producing reliable radiation hardened power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). GaN FETs not only have better electrical performance than power MOSFETs, they have also demonstrated inherent tolerance to radiation. This results in less structural device changes needed to make GaN FETs operate reliably under high radiation compared to their MOSFETs counterparts. This work outlines the design implications of using newly released radiation hardened GaN FETs to implement a fixed frequency isolated Phase Shifted Full Bridge DC-DC converter while strictly abiding to the design constraints found in space-power converter applications. In addition, a one-to-one performance comparison was made between the soft-switched Phase Shift modulated Full Bridge and the conventional hard-switched Full Bridge DC-DC converter. Finally, different magnetic designs were evaluated in the laboratory to assess their impact on converter efficiency.

Page generated in 0.0603 seconds