• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 16
  • 10
  • 10
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 170
  • 170
  • 69
  • 53
  • 52
  • 34
  • 33
  • 33
  • 26
  • 25
  • 23
  • 21
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Electromechanical Design and Development of the Virginia Tech Roller Rig Testing Facility for Wheel-rail Contact Mechanics and Dynamics

Hosseinipour, Milad 28 September 2016 (has links)
The electromechanical design and development of a sophisticated roller rig testing facility at the Railway Technologies Laboratory (RTL) of Virginia Polytechnic and State University (VT) is presented. The VT Roller Rig is intended for studying the complex dynamics and mechanics at the wheel-rail interface of railway vehicles in a controlled laboratory environment. Such measurements require excellent powering and driving architecture, high-performance motion control, accurate measurements, and relatively noise-free data acquisition systems. It is critical to accurately control the relative dynamics and positioning of rotating bodies to emulate field conditions. To measure the contact forces and moments, special care must be taken to ensure any noise, such as mechanical vibration, electrical crosstalk, and electromagnetic interference (EMI) are kept to a minimum. This document describes the steps towards design and development of all electromechanical subsystems of the VT Roller Rig, including the powertrain, power electronics, motion control systems, sensors, data acquisition units, safety and monitoring circuits, and general practices followed for satisfying the local and international codes of practice. The VT Roller Rig is comprised of a wheel and a roller in a vertical configuration that simulate the single-wheel/rail interaction in one-fourth scale. The roller is five times larger than the scaled wheel to keep the contact patch distortion that is inevitable with a roller rig to a minimum. This setup is driven by two independent AC servo motors that control the velocity of the wheel and roller using state-of-the-art motion control technologies. Six linear actuators allow for adjusting the simulated load, wheel angle of attack, rail cant, and lateral position of the wheel on the rail. All motion controls are performed using digital servo drives, manufactured by Kollmorgen, VA, USA. A number of sensors measure the contact patch parameters including force, torque, displacement, rotation, speed, acceleration, and contact patch geometry. A unified communication protocol between the actuators and sensors minimizes data conversion time, which allows for servo update rates of up to 48kHz. This provides an unmatched bandwidth for performing various dynamics, vibrations, and transient tests, as well as static steady-state conditions. The VT Roller Rig has been debugged and commissioned successfully. The hardware and software components are tested both individually and within the system. The VT Roller Rig can control the creepage within 0.3RPM of the commanded value, while actively controlling the relative position of the rotating bodies with an unprecedented level of accuracy, no more than 16nm of the target location. The contact force measurement dynamometers can dynamically capture the contact forces to within 13.6N accuracy, for up to 10kN. The instantaneous torque in each driveline can be measured with better than 6.1Nm resolution. The VT Roller Rig Motion Programming Interface (MPI) is highly flexible for both programmers and non-programmers. All common motion control algorithms in the servo motion industry have been successfully implemented on the Rig. The VT Roller Rig MPI accepts third party motion algorithms in C, C++, and any .Net language. It successfully communicates with other design and analytics software such as Matlab, Simulink, and LabVIEW for performing custom-designed routines. It also provides the infrastructure for linking the Rig's hardware with commercial multibody dynamics software such as Simpack, NUCARS, and Vampire, which is a milestone for hardware-in-the-loop testing of railroad systems. / Ph. D.
152

GNSS Hardware-In-The-Loop Formation and Tracking Control

Harris, Frederick Bernard Jr. 20 June 2016 (has links)
Formation and tracking control are critical for of today's vehicle applications in and this will be true for future vehicle technologies as well. Although the general function of these controls is for data collection and military applications, formation and tracking control may be applied to automobiles, drones, submarines, and spacecraft. The primary application here is the investigation of formation keeping and tracking solutions for realistic, real-time, and multi-vehicle simulations. This research explores the creation of a predictive navigation and control algorithm for formation keeping and tracking, raw measurement data collection, and building a real-time GNSS closed HWIL testbed for simulations of different vehicles. The L1 frequency band of the Global Positioning System (GPS) constellation is used to observe and generate raw measurement data that encompasses range, pseudo-range, and Doppler frequency. The closed HWIL simulations are implemented using Spirent's Communication Global Navigation Satellite system (GNSS) 6560 and 8000 hardware simulators along with Ashtech, G-12 and DG-14, and Novetel OEM 628 receivers. The predictive navigation control is similar to other vision-based tracking techniques, but relies mainly on vector projections that are controlled by acceleration, velocity magnitude, and direction constraints to generate realistic motion. The current state of the testbed is capable of handling one or more vehicle applications. The testbed can model simulations up to 24 hours. The vehicle performance during simulations can be customized for any required precision by setting a variety of vehicle parameters. The testbed is built from basic principles and is easily upgradable for future expansions or upgrades. / Master of Science
153

Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation

Manning, Peter Christopher 09 July 2014 (has links)
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP) of designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle, the selected powertrain is a Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission. Development of a charge sustaining control strategy for this vehicle involves coordination of controls for each of the main powertrain components through a distributed control strategy. This distributed control strategy includes component controllers for each individual component and a single supervisory controller responsible for interpreting driver demand and determining component commands to meet the driver demand safely and efficiently. For example, the algorithm accounts for a variety of system operating points and will penalize or reward certain operating points for other conditions. These conditions include but are not limited to rewards for discharging the battery when the state of charge (SOC) is above the target value or penalties for operating points with excessive emissions. Development of diagnostics and remedial actions is an important part of controlling the powertrain safely. In order to validate the control strategy prior to in-vehicle operation, simulations are run against a plant model of the vehicle systems. This plant model can be run in both controller Software- and controller Hardware-In-the-Loop (SIL and HIL) simulations. This paper details the development of the controls for diagnostics, major selection algorithms, and execution of commands and its integration into the Series-Parallel PHEV through the supervisory controller. This paper also covers the plant model development and testing of the control algorithms using controller SIL and HIL methods. This paper details reasons for any changes to the control system, and describes improvements or tradeoffs that had to be made to the control system architecture for the vehicle to run reliably and meet its target specifications. Test results illustrate how changes to the plant model and control code properly affect operation of the control system in the actual vehicle. The VT Malibu is operational and projected to perform well at the final competition. / Master of Science
154

Hardware-in-the-Loop Simulation of Aircraft Actuator

Braun, Robert January 2009 (has links)
<p>Advanced computer simulations will play a more and more important role in future aircraft development and aeronautic research. Hardware-in-the-loop simulations enable examination of single components without the need of a full-scale model of the system. This project investigates the possibility of conducting hardware-in-the-loop simulations using a hydraulic test rig utilizing modern computer equipment. Controllers and models have been built in Simulink and Hopsan. Most hydraulic and mechanical components used in Hopsan have also been translated from Fortran to C and compiled into shared libraries (.dll). This provides an easy way of importing Hopsan models in LabVIEW, which is used to control the test rig. The results have been compared between Hopsan and LabVIEW, and no major differences in the results could be found. Importing Hopsan components to LabVIEW can potentially enable powerful features not available in Hopsan, such as hardware-in-the-loop simulations, multi-core processing and advanced plotting tools. It does however require fast computer systems to achieve real-time speed. The results of this project can provide interesting starting points in the development of the next generation of Hopsan.</p>
155

Hardware-in-the-Loop Simulation of Aircraft Actuator

Braun, Robert January 2009 (has links)
Advanced computer simulations will play a more and more important role in future aircraft development and aeronautic research. Hardware-in-the-loop simulations enable examination of single components without the need of a full-scale model of the system. This project investigates the possibility of conducting hardware-in-the-loop simulations using a hydraulic test rig utilizing modern computer equipment. Controllers and models have been built in Simulink and Hopsan. Most hydraulic and mechanical components used in Hopsan have also been translated from Fortran to C and compiled into shared libraries (.dll). This provides an easy way of importing Hopsan models in LabVIEW, which is used to control the test rig. The results have been compared between Hopsan and LabVIEW, and no major differences in the results could be found. Importing Hopsan components to LabVIEW can potentially enable powerful features not available in Hopsan, such as hardware-in-the-loop simulations, multi-core processing and advanced plotting tools. It does however require fast computer systems to achieve real-time speed. The results of this project can provide interesting starting points in the development of the next generation of Hopsan.
156

Simulation temps réel de dispositifs électrotechniques / Real-time simulation of electrical power plant

Rakotozafy, Andriamaharavo 15 May 2014 (has links)
Les contrôleurs industriels font l’objet de changements de paramètres, de modifications, d’améliorations en permanence. Ils subissent les évolutions technologiques aussi bien matérielles que logicielles (librairies, système d’exploitation, loi de commande...). Malgré ces contraintes, ces contrôleurs doivent obligatoirement assurer toutes les fonctionnalités recouvrant le séquentiel, les protections, l’interface homme machine et la stabilité du système à contrôler. Ces fonctionnalités doivent être couvertes pour une large gamme d’applications. Chaque modification (matérielle ou logicielle) quoique mineure est risquée. Le debogage, l’analyse et la programmation sur site sont énormément coûteux surtout pour des sites de type offshore ou marine. Les conditions de travail sont difficiles et les tests sont réduits au strict minimum. Cette thèse propose deux niveaux de validation en plateforme d’expérimentation : un niveau de validation algorithmique que l’on appelle Validation par Interface Logicielle (VIL) traitée au chapitre 2 ; un niveau de validation physique que l’on appelle Validation par Interface Matérielle (VIM) traitée au chapitre 3. La VIL valide uniquement l’aspect algorithme, la loi de commande et la conformité des références au niveau calcul sans prendre en compte les signaux de commande physiques et les signaux de retour gérés par l’Unité de Gestion des Entrées/Sorties (UGES). Un exemple de validation d’un contrôleur industriel d’un ensemble convertisseur trois niveaux et machine asynchrone est traité dans le deuxième chapitre avec une modélisation particulièrement adaptée à la VIL. Le dernier chapitre traite la VIM sur différentes bases matérielles (Field Programmable Gate Array (FPGA), processeurs). Cette validation prend en compte l’aspect algorithme et les signaux de commande physique ainsi que les signaux de retour. On y présente plusieurs approches de modélisation, choisies selon la base matérielle d’implémentation du simulateur temps réel. Ces travaux ont contribué aujourd’hui à au processus de validation des contrôleurs dédiés aux applications Oil and Gaz et Marine de General Electric - Power Conversion © (GE-PC) / Industrial controllers are always subjected to parameters change, modifications and permanent improvements. They have to follow off-the-shelf technologies as well as hardware than software (libraries, operating system, control regulations ...). Apart from these primary necessities, additional aspects concerning the system operation that includes sequential, protections, human machine interface and system stability have to be implemented and interfaced correctly. In addition, these functions should be generically structured to be used in common for wide range of applications. All modifications (hardware or software) even slight ones are risky. In the absence of a prior validation system, these modifications are potentially a source of system instability or damage. On-site debugging and modification are not only extremely expensive but can be highly risky, cumulate expenditure and reduce productivity. This concerns all major industrial applications, Oil & Gas installations and Marine applications. Working conditions are difficult and the amount of tests that can be done is strictly limited to the mandatory ones. This thesis proposes two levels of industrial controller validation which can be done in experimental test platform : an algorithm validation level called Software In the Loop (SIL) treated in the second chapter ; a physical hardware validation called Hardware In the Loop (HIL) treated in the third chapter. The SIL validates only the control algorithm, the control law and the computed references without taking into account neither the actual physical commands nor the physical input feedbacks managed by the Input/Output boards. SIL validation of the system where industrial asynchronous motor is fed and regulated by a three level Variable Speed Drive with a three level voltage source converter is treated in the second chapter with a particular modeling approach adapted to such validation. The last chapter presents the HIL validation with various hardware implementations (Field Programmable Gate Array (FPGA), processors). Such validation checks both the control algorithm and the actual physical Input/Output signals generated by the dedicated boards. Each time, the modeling approach is chosen according to the hardware implementation. Currently this work has contributed to the system validation used by General Electric - Power Conversion © (GE-PC) as part of their validation phase that is mandatory for Oil & Gas projects and Marine applications
157

Real-time Dynamic Simulation of Constrained Multibody Systems using Symbolic Computation

Uchida, Thomas Kenji January 2011 (has links)
The main objective of this research is the development of a framework for the automatic generation of systems of kinematic and dynamic equations that are suitable for real-time applications. In particular, the efficient simulation of constrained multibody systems is addressed. When modelled with ideal joints, many mechanical systems of practical interest contain closed kinematic chains, or kinematic loops, and are most conveniently modelled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques. In this work, the equations of motion are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic constraint equations, thereby producing recursively solvable systems for calculating the dependent generalized coordinates given values of the independent coordinates. For systems that can be fully triangularized, the kinematic constraints are always satisfied exactly and in a fixed amount of time. Where full triangularization is not possible, a block-triangular form can be obtained that still results in more efficient simulations than existing iterative and constraint stabilization techniques. The proposed approach is applied to the kinematic and dynamic simulation of several mechanical systems, including six-bar mechanisms, parallel robots, and two vehicle suspensions: a five-link and a double-wishbone. The efficient kinematic solution generated for the latter is used in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator. The Gröbner basis approach is particularly suitable for situations requiring very efficient simulations of multibody systems whose parameters are constant, such as the plant models in model-predictive control strategies and the vehicle models in driving simulators.
158

Real-time Dynamic Simulation of Constrained Multibody Systems using Symbolic Computation

Uchida, Thomas Kenji January 2011 (has links)
The main objective of this research is the development of a framework for the automatic generation of systems of kinematic and dynamic equations that are suitable for real-time applications. In particular, the efficient simulation of constrained multibody systems is addressed. When modelled with ideal joints, many mechanical systems of practical interest contain closed kinematic chains, or kinematic loops, and are most conveniently modelled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques. In this work, the equations of motion are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic constraint equations, thereby producing recursively solvable systems for calculating the dependent generalized coordinates given values of the independent coordinates. For systems that can be fully triangularized, the kinematic constraints are always satisfied exactly and in a fixed amount of time. Where full triangularization is not possible, a block-triangular form can be obtained that still results in more efficient simulations than existing iterative and constraint stabilization techniques. The proposed approach is applied to the kinematic and dynamic simulation of several mechanical systems, including six-bar mechanisms, parallel robots, and two vehicle suspensions: a five-link and a double-wishbone. The efficient kinematic solution generated for the latter is used in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator. The Gröbner basis approach is particularly suitable for situations requiring very efficient simulations of multibody systems whose parameters are constant, such as the plant models in model-predictive control strategies and the vehicle models in driving simulators.
159

Modelagem e controle de funções auxiliares em inversores inteligentes para suporte a microrredes CA - simulação em tempo real com controle hardware in the loop

Silva Júnior, Dalmo Cardoso da 11 December 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-03-27T15:05:33Z No. of bitstreams: 1 dalmocardosodasilvajunior.pdf: 7879052 bytes, checksum: 389a4104e77ceeccf54e988e08d73109 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-03-27T17:57:39Z (GMT) No. of bitstreams: 1 dalmocardosodasilvajunior.pdf: 7879052 bytes, checksum: 389a4104e77ceeccf54e988e08d73109 (MD5) / Made available in DSpace on 2018-03-27T17:57:39Z (GMT). No. of bitstreams: 1 dalmocardosodasilvajunior.pdf: 7879052 bytes, checksum: 389a4104e77ceeccf54e988e08d73109 (MD5) Previous issue date: 2017-12-11 / As tecnologias de Geração Distribuída (GD), geralmente, consistem em geradores modulares (em grande maioria renováveis) que oferecem uma série de benefícios poten-ciais, além de estarem mais próximos dos consumidores finais. Embora a GD possa ter colaborações como comentado, a inserção de energias renováveis na rede elétrica pode afetar a proteção e também a estabilidade da mesma, implicando em desvios na tensão e na frequência do sistema. Um dos principais problemas enfrentados é a falta de inér-cia das energias renováveis e também o aparecimento de correntes harmônicas devido às cargas não lineares. Baseado nesse cenário, e como forma de solução dos problemas comentados, surge a pesquisa de inversores multifuncionais, capazes de não só conectar tais energias renováveis à rede elétrica, mas também oferecer suporte a ela. Os serviços ancilares incluem auxílio à estabilidade de tensão e frequência, mitigação de conteúdo harmônico, equilíbrio de geração e demanda de energia, entre outros aspectos. Dessa forma, metodologias baseadas nas implementações alternativas de controle, tais como a Máquina Síncrona Virtual e o Filtro Ativo de Potência (FAP) podem ser adotadas como soluções para esses problemas. Nessa vertente, simulações em tempo real com Hardware In the Loop (HIL) no simulador digital de tempo real (Real Time Digital Simulator) (RTDS) e processamento digital de sinal e engenharia de controle (digi-tal Signal Processing and Control Engineering) (dSPACE), são ferramentas poderosas que podem auxiliar o processo de simulação das funções ancilares analisadas. Assim, nesse trabalho, simulou-se o inversor multifuncional como forma de mostrar a efetiva regulação de tensão, frequência e diminuição do conteúdo harmônico em sistemas de potência, especialmente em microrredes de corrente alternada (CA). Por fim, os resul-tados demonstram o funcionamento do sistema e podem ser usados como validação das estratégias de controle propostas. / Distributed Generation technologies generally consist of modular (mostly renewa-ble) generators that offer a number of potential benefits, while being closer to the end consumers. Although the DG present features as commented, the insertion of renewa-ble energies in the electrical network can affect the protection and also the stability of the network, implying in voltage and frequency deviations. One of the main problems faced is the lack of inertia of renewable energies and also the appearance of harmonic currents due to non-linear loads. Based on this scenario, and as a way of solving these problems, the research of smart inverters, capable of not only connecting such renewable energies to the electric grid but also supporting it, emerges. Some ancillary services as voltage and frequency stability, mitigation of harmonic content, balance of generation and energy demand, among other aspects, can be fullfilled. Thus, methodologies based on sophisticated control implementations such as the Virtual Synchronous Machine and the Active Power Filter, can be adopted as solutions to these problems. In this aspect, real-time simulations with Control Hardware In The Loop HIL in Real Time Digital Simulator RTDS and dSPACE, are a powerfulls tool can aid the simulation process of the analyzed ancillary functions. Thus, in this work, the multifunctional inverter was simulated as a way to show the effective regulation of voltage, frequency, and harmonic content mitigation in power systems, especially in AC microgrids. Finally, the results demonstrate the operation of the system and can be used as validation of the proposed control strategies.
160

Development of a Heavy Truck Vehicle Dynamics Model using Trucksim and Model Based Design of ABS and ESC Controllers in Simulink

Rao, Shreesha Yogish 11 July 2013 (has links)
No description available.

Page generated in 0.0784 seconds