• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 43
  • 43
  • 15
  • 10
  • 9
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Region-based Convolutional Neural Network and Implementation of the Network Through Zedboard Zynq

MD MAHMUDUL ISLAM (6372773) 10 June 2019 (has links)
<div>In autonomous driving, medical diagnosis, unmanned vehicles and many other new technologies, the neural network and computer vision has become extremely popular and influential. In particular, for classifying objects, convolutional neural networks (CNN) is very efficient and accurate. One version is the Region-based CNN (RCNN). This is our selected network design for a new implementation in an FPGA.</div><div><br></div><div>This network identies stop signs in an image. We successfully designed and trained an RCNN network in MATLAB and implemented it in the hardware to use in an embedded real-world application. The hardware implementation has been achieved with maximum FPGA utilization of 220 18k_BRAMS, 92 DSP48Es, 8156 FFS, 11010 LUTs with an on-chip power consumption of 2.235 Watts. The execution speed in FPGA is 0.31 ms vs. the MATLAB execution of 153 ms (on computer) and 46 ms (on GPU).</div>
12

Distance measurement by means of phase radar

Huang, Gang January 2019 (has links)
A distance measurement by means of phase is used in a scheme to locate a transmitter. The system consists of three antennas. There is a transmitter, that in a sense acts as a target, in terms of radar concepts. Two receivers are used to determine the distance needed to find the position of the transmitter in the 2D plane. The software LabVIEW is used in this study. The cable lengths are adapted to the measurement.
13

Camera System Design

Risberg, Robert January 2003 (has links)
<p>Devices have become increasingly more interconnected to their surroundings over the last few years. The introduction of Bluetooth is likely to further accelerate this trend. With Bluetooth's bandwidth and expected low price, many devices will likely be fitted with Bluetooth chips and thus enable more devices to exchange data. </p><p>This master thesis aims at connecting a Personal Digital Assistant to an ARM Thumb microcontroller over Bluetooth. To the ARM Thumb shall an image capturing device be interfaced and the captured images shall be sent over Bluetooth to the Personal Digital Assistant which shall display them.</p>
14

Turbo Bayesian Compressed Sensing

Yang, Depeng 01 August 2011 (has links)
Compressed sensing (CS) theory specifies a new signal acquisition approach, potentially allowing the acquisition of signals at a much lower data rate than the Nyquist sampling rate. In CS, the signal is not directly acquired but reconstructed from a few measurements. One of the key problems in CS is how to recover the original signal from measurements in the presence of noise. This dissertation addresses signal reconstruction problems in CS. First, a feedback structure and signal recovery algorithm, orthogonal pruning pursuit (OPP), is proposed to exploit the prior knowledge to reconstruct the signal in the noise-free situation. To handle the noise, a noise-aware signal reconstruction algorithm based on Bayesian Compressed Sensing (BCS) is developed. Moreover, a novel Turbo Bayesian Compressed Sensing (TBCS) algorithm is developed for joint signal reconstruction by exploiting both spatial and temporal redundancy. Then, the TBCS algorithm is applied to a UWB positioning system for achieving mm-accuracy with low sampling rate ADCs. Finally, hardware implementation of BCS signal reconstruction on FPGAs and GPUs is investigated. Implementation on GPUs and FPGAs of parallel Cholesky decomposition, which is a key component of BCS, is explored. Simulation results on software and hardware have demonstrated that OPP and TBCS outperform previous approaches, with UWB positioning accuracy improved by 12.8x. The accelerated computation helps enable real-time application of this work.
15

Camera System Design

Risberg, Robert January 2003 (has links)
Devices have become increasingly more interconnected to their surroundings over the last few years. The introduction of Bluetooth is likely to further accelerate this trend. With Bluetooth's bandwidth and expected low price, many devices will likely be fitted with Bluetooth chips and thus enable more devices to exchange data. This master thesis aims at connecting a Personal Digital Assistant to an ARM Thumb microcontroller over Bluetooth. To the ARM Thumb shall an image capturing device be interfaced and the captured images shall be sent over Bluetooth to the Personal Digital Assistant which shall display them.
16

Towards Efficient Hardware Implementation of Elliptic and Hyperelliptic Curve Cryptography

Ismail, Marwa Nabil January 2012 (has links)
Implementation of elliptic and hyperelliptic curve cryptographic algorithms has been the focus of a great deal of recent research directed at increasing efficiency. Elliptic curve cryptography (ECC) was introduced independently by Koblitz and Miller in the 1980s. Hyperelliptic curve cryptography (HECC), a generalization of the elliptic curve case, allows a decreasing field size as the genus increases. The work presented in this thesis examines the problems created by limited area, power, and computation time when elliptic and hyperelliptic curves are integrated into constrained devices such as wireless sensor network (WSN) and smart cards. The lack of a battery in wireless sensor network limits the processing power of these devices, but they still require security. It was widely believed that devices with such constrained resources cannot incorporate a strong HECC processor for performing cryptographic operations such as elliptic curve scalar multiplication (ECSM) or hyperelliptic curve divisor multiplication (HCDM). However, the work presented in this thesis has demonstrated the feasibility of integrating an HECC processor into such devices through the use of the proposed architecture synthesis and optimization techniques for several inversion-free algorithms. The goal of this work is to develop a hardware implementation of binary elliptic and hyperelliptic curves. The focus is on the modeling of three factors: register allocation, operation scheduling, and storage binding. These factors were then integrated into architecture synthesis and optimization techniques in order to determine the best overall implementation suitable for constrained devices. The main purpose of the optimization is to reduce the area and power. Through analysis of the architecture optimization techniques for both datapath and control unit synthesis, the number of registers was reduced by an average of 30%. The use of the proposed efficient explicit formula for the different algorithms also enabled a reduction in the number of read/write operations from/to the register file, which reduces the processing power consumption. As a result, an overall HECC processor requires from 1843 to 3595 slices for a Xilinix XC4VLX200 and the total computation time is limited to between 10.08 ms to 15.82 ms at a maximum frequency of 50 MHz for a varity of inversion-free coordinate systems in hyperelliptic curves. The value of the new model has been demonstrated with respect to its implementation in elliptic and hyperelliptic curve crypogrpahic algorithms, through both synthesis and simulations. In summary, a framework has been provided for consideration of interactions with synthesis and optimization through architecture modeling for constrained enviroments. Insights have also been presented with respect to improving the design process for cryptogrpahic algorithms through datapath and control unit analysis.
17

Design and implementation of a decimation filter using a multi-precision multiply and accumulate unit for an audio range delta sigma analog to digital converter

Lindahl, Erik January 2008 (has links)
<p>This work presents the design and implementation of a decimation filter for a three bits sigma delta analog to digital converter. The input is audio with a oversampling ratio of 32. Filter optimization and tradeoffs concerning the design is described. The filter is a multistage filter consisting of two cascaded FIR filters. The arithmetic unit is a multi-precision unit that can handle three or 24 bits MAC operations. The designed decimation filter is synthesized on standard cells of a 0.13 μm CMOS library.</p>
18

Design and implementation of a decimation filter using a multi-precision multiply and accumulate unit for an audio range delta sigma analog to digital converter

Lindahl, Erik January 2008 (has links)
This work presents the design and implementation of a decimation filter for a three bits sigma delta analog to digital converter. The input is audio with a oversampling ratio of 32. Filter optimization and tradeoffs concerning the design is described. The filter is a multistage filter consisting of two cascaded FIR filters. The arithmetic unit is a multi-precision unit that can handle three or 24 bits MAC operations. The designed decimation filter is synthesized on standard cells of a 0.13 μm CMOS library.
19

Design et implémentation sur FPGA d'un algorithme DES

Amoud, Mohamed January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
20

Towards Efficient Hardware Implementation of Elliptic and Hyperelliptic Curve Cryptography

Ismail, Marwa Nabil January 2012 (has links)
Implementation of elliptic and hyperelliptic curve cryptographic algorithms has been the focus of a great deal of recent research directed at increasing efficiency. Elliptic curve cryptography (ECC) was introduced independently by Koblitz and Miller in the 1980s. Hyperelliptic curve cryptography (HECC), a generalization of the elliptic curve case, allows a decreasing field size as the genus increases. The work presented in this thesis examines the problems created by limited area, power, and computation time when elliptic and hyperelliptic curves are integrated into constrained devices such as wireless sensor network (WSN) and smart cards. The lack of a battery in wireless sensor network limits the processing power of these devices, but they still require security. It was widely believed that devices with such constrained resources cannot incorporate a strong HECC processor for performing cryptographic operations such as elliptic curve scalar multiplication (ECSM) or hyperelliptic curve divisor multiplication (HCDM). However, the work presented in this thesis has demonstrated the feasibility of integrating an HECC processor into such devices through the use of the proposed architecture synthesis and optimization techniques for several inversion-free algorithms. The goal of this work is to develop a hardware implementation of binary elliptic and hyperelliptic curves. The focus is on the modeling of three factors: register allocation, operation scheduling, and storage binding. These factors were then integrated into architecture synthesis and optimization techniques in order to determine the best overall implementation suitable for constrained devices. The main purpose of the optimization is to reduce the area and power. Through analysis of the architecture optimization techniques for both datapath and control unit synthesis, the number of registers was reduced by an average of 30%. The use of the proposed efficient explicit formula for the different algorithms also enabled a reduction in the number of read/write operations from/to the register file, which reduces the processing power consumption. As a result, an overall HECC processor requires from 1843 to 3595 slices for a Xilinix XC4VLX200 and the total computation time is limited to between 10.08 ms to 15.82 ms at a maximum frequency of 50 MHz for a varity of inversion-free coordinate systems in hyperelliptic curves. The value of the new model has been demonstrated with respect to its implementation in elliptic and hyperelliptic curve crypogrpahic algorithms, through both synthesis and simulations. In summary, a framework has been provided for consideration of interactions with synthesis and optimization through architecture modeling for constrained enviroments. Insights have also been presented with respect to improving the design process for cryptogrpahic algorithms through datapath and control unit analysis.

Page generated in 0.1482 seconds