• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Wavelets on Lie groups and homogeneous spaces

Ebert, Svend 25 November 2011 (has links)
Within the past decades, wavelets and associated wavelet transforms have been intensively investigated in both applied and pure mathematics. They and the related multi-scale analysis provide essential tools to describe, analyse and modify signals, images or, in rather abstract concepts, functions, function spaces and associated operators. We introduce the concept of diffusive wavelets where the dilation operator is provided by an evolution like process that comes from an approximate identity. The translation operator is naturally defined by a regular representation of the Lie group where we want to construct wavelets. For compact Lie groups the theory can be formulated in a very elegant way and also for homogeneous spaces of those groups we formulate the theory in the theory of non-commutative harmonic analysis. Explicit realisation are given for the Rotation group SO(3), the k-Torus, the Spin group and the n-sphere as homogeneous space. As non compact example we discuss diffusive wavelets on the Heisenberg group, where the construction succeeds thanks to existence of the Plancherel measure for this group. The last chapter is devoted to the Radon transform on SO(3), where the application on diffusive wavelets can be used for its inversion. The discussion of a variational spline approach provides criteria for the choice of points for measurements in concrete applications.
12

Mode decomposition and Fourier analysis of physical fields in homogeneous cosmology

Avetisyan, Zhirayr 03 July 2013 (has links)
In this work the methods of mode decomposition and Fourier analysis of quantum fields on curved spacetimes previously available mainly for the scalar fields on Friedman-Robertson-Walker spacetimes are extended to arbitrary vector fields on general spatially homogeneous spacetimes. This is done by developing a rigorous unified framework which incorporates mode decomposition, harmonic analysis and Fourier analysis. Explicit constructions are performed for a variety of situations arising in homogeneous cosmology. A number of results concerning classical and quantum fields known for very restricted situations are generalized to cover almost all cosmological models.
13

Observability inequalities for infinite-dimensional systems in Banach spaces and unique determination of a singular potential from boundary data

Bombach, Clemens 16 July 2024 (has links)
In this thesis, we prove observability inequalities for systems of differential equations in Banach spaces. In particular, we consider non-autonomous systems and systems of elliptic PDE with infinite-dimensional state space. We employ methods from harmonic analysis. This includes a vector-valued version of the Logvinenko-Sereda theorem, generalizing previous work by O. Kovrijkine. Our results are applied to establish null-controllability of control systems in Banach spaces together with precise estimates on the control cost. Furthermore, we consider an inverse problem for the stationary Schrödinger equation in three dimensions. In this setting, we prove that a Kato-class potential is uniquely determined by it's associated Dirichlet-to-Neumann operator. This complements a result by B. Haberman on the Calderón problem for conductivities with unbounded gradient.
14

Investigation of the biophysical basis for cell organelle morphology

Mayer, Jürgen 09 February 2010 (has links) (PDF)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.
15

Investigation of the biophysical basis for cell organelle morphology

Mayer, Jürgen 12 February 2008 (has links)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry. Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.

Page generated in 0.0556 seconds