Spelling suggestions: "subject:"heat - btransfer coefficient"" "subject:"heat - cotransfer coefficient""
101 |
Okrajové podmínky ve válcovací mezeře při válcování za tepla a za studena / Boundary Conditions in the Roll Gap during Hot and Cold RollingLuks, Tomáš January 2016 (has links)
Boundary conditions in the roll gap play an important role in modelling of rolling processes. In the roll gap we can observe the following: changes of rolling pressure, changes of relative velocity, influences of oxides and lubrication, etc. When taking into account all conditions mentioned above the determination of the boundary conditions is not trivial and extensive measurements are necessary. Therefore, this thesis is dealing with design of temperature and force sensors specified for the determination of friction coefficient and heat transfer coefficient in contact. The temperature sensor with an installed thermocouple measures subsurface temperature for a given depth; and then the inverse heat conduction task is used to compute temperature and heat flux on the surface. Several temperature sensors were designed and used for measuring in pilot mill and industrial rolling mill as well. The thermal responses of different sensors were compared in the numerical simulations. The inverse calculations were tested for various rolling conditions. A durability of the sensors was also studied in industrial rolling conditions. The contact stresses in the roll gap were measured by a pin, which was in direct contact with the rolled material. The forces on the top of the pin were measured by a three-axes piezoelectric force transducer and recalculated to the contact stress and friction coefficient. The sensor was implemented in a work roll and tested when rolling aluminium and steel slab for different rolling conditions. The results were compared with the integrative force sensor ROLLSURF.
|
102 |
Rozvoj inverzních úloh vedení tepla se zaměřením na velmi rychlé procesy v mikroskopických měřítcích / The Development of Inverse Heat Conduction Problems Focused on Very Fast Processes in MicroscalesBellerová, Hana January 2011 (has links)
The inverse heat conduction task is solved to determine boundary condition of the heat equation. This work deals with the ways how to increase the accuracy of the results obtained by solving inverse task based on the Beck sequential algorithm. The work is focused on the boundary condition changing very fast. This boundary condition is determinable with difficulty. It is shown that the placement and the type of the thermocouple play major role in accuracy of the calculation. The frequency of measuring and the discriminability of used devices also play a role as well as the setup of parameters in the inverse task. The election of mentioned parameters is described with regard to the speed of cooling. Knowledge from the theoretical part of the work is applied in the experimental part. The cooling intensity is investigated during spraying of the steel sample by water with nanoparticles Al2O3, TiO2, Fe and MWNT at three different concentrations. The experiments were carried out for three spray heights (40, 100, 160 mm), three flow rates (1, 1.5, 2 kg/min) and two types of the nozzle (full cone and solid jet). Surprisingly, the cooling intensity by using nanofluids is lower about 30% in comparison to the cooling intensity of pure water. But there was an exception. The cooling intensity of 1 wt.% of carbon nanotubes in water falling from the full cone nozzle placed in distance of 100 mm from the steel surface was higher about 174%. Finally, the reasons of the behavior of nanofluids are discussed.
|
103 |
Kvantifikace mechanismů hydraulického odstranění okují / Quantification of Hydraulic Descaling MechanismsHrabovský, Jozef January 2012 (has links)
The issue of descaling is an important part of the forging and heat treatment of steel and semi products of steel production. Rising of new information and study of this process can increase efficiency and improve the surface quality after descaling. This thesis is focused on the mechanisms of the high pressure hydraulic descaling qualification and study of the chemical compounds of which the scales grown. To achieve all goals of this work and to get a comprehensive view of descaling process, few experimental measurements and numerical analyses were performed. All experimental measurements were focused on obtaining data about fundamental parameters and effects of the hydraulic descaling. The data obtained from measurements were applied to numerical analyses, which aimed to discover a deeper relation and to confirm the experimental results. This thesis can be divided into two main parts. The first part is devoted to parameters of the water jet study. The main studied characteristics of the high pressure hydraulic water jet were heat transfer coefficient and impact pressure at different modes such as standard or pulsating water jet. Experimentally measured data of these parameters were applied in numerical analyses. The numerical analyses were focused on studying the impact of the water jet parameters on the stresses in the oxide scale layers. A further water jet analysis was focused on the influence of the individual parts of the hydraulic system (such as water chamber or stabilizer) on its characteristics. In this part different types of the water chambers in combination with different types of stabilizers on the impact pressure values were investigated. These measurements were supported by fluid flow analysis through the hydraulic system. The second part of this work was focused on getting mechanical properties of the oxide scales from specimens prepared from standard structural steel and specimens from silicon steel. In this thesis, the influence of various parameters and characteristics was studied on these two types of steel. Mechanical properties of oxide scale structures were carried out by the Small Punch Test method. To obtain the fundamental mechanical properties such as Young´s modulus, yield strength and ultimate strength, material parameters based on the measured data were optimized. The whole work was carried out in order to get valuable and comprehensive results about high pressure hydraulic descaling process and influencing factors as well as about oxide scales themselves.
|
104 |
SPRAY OVERLAP AND HEAT TRANSFER COEFFICIENT UNIFORMITY IN CONTINUOUS CASTINGNinad Sandeep Patil (15412307) 04 May 2023 (has links)
<p>Firstly, select a nozzle and get all its parameters like spray angle, mass flow rate, dipersion angle and nozzle diameter. Create a domain in which 2 nozzles can fit, as shown in thesis. Divide the domain in 2 zones and perform fine mesh on the top surface of solid surface where spray will heat. Write a function for slab temperature variation and give it as the solid part input. Use DPM model, to create injectors inside the domain and solve.</p>
|
105 |
Mall för jämförelse av ytterväggar i byggprojekt : Examensarbete i jämförande av ytterväggar för byggprojekt av flerbostadshus med en Excelmall / Template for comparison of exterior walls in construction projects : Bachelor thesis comparing exterior walls for building projects of multi-family houses using an Excel template Författare: Jonas Bergh Oscar Klockars Uppdragsgivare: JärntorgetBergh, Jonas, Klockars, Oscar January 2017 (has links)
Byggbranschen har många olika ytterväggar i projekt. Det är ofta svårt och tidskrävande att ta reda på vilket av ytterväggsalternativen som är bäst för ett specifikt projekt. I examensarbetet har det tagits fram en mall för att kunna jämföra prefabricerade ytterväggars; värmegenomgångskoefficient (U-värde), arbetstider, kostnader för material och arbete, avfall i produktion, skillnader i bruksarea och skillnad i intäkter beroende på väggens tjocklek. Genom tester med hjälp av kalkylering- och U-värdesberäkningsprogram har mallen kontrollerats för att få värden som stämmer överens med dessa. Det resulterade i att totalkostnaderna skiljer sig med 0,002-2,395 %, tidsåtgången 0-0,007 % och U-värdet 2,4 %. Jämförelse mellan två olika väggtyper har gjorts åt Järntorgets begäran. Ena väggen är en prefabricerad utfackningsvägg bestående av mineralullsisolering med stålreglar och den andra en bärande betongvägg med PIR-isolering. Resultatet av jämförelsen visade att utfackningsväggen var det mest lönsamma alternativet. En tredje yttervägg lades även till i jämförelsen för att hitta ett bättre alternativ. Det är en utfackningsvägg med PIR-isolering innehållande låg andel genomgående stålreglar. Resultatet visade att utfackningsväggen med PIR-isolering är det bättre alternativet. / The construction industry has many different exterior walls in projects. It is often difficult and time consuming to find out which of the exterior wall options is best for a specific project. In the bachelor thesis a template has been developed to compare prefabricated outer walls; Heat transfer coefficient (U value), working hours, materials and labor costs, waste in production, differences in usage area and difference in revenue depending on the thickness of the wall. Through tests using programs for cost calculation and U-value calculation, the template has been examined to match those values. As a result, total costs differed 0.002-2.395%, duration of the project 0-0.007% and U-value 2.4%. Comparison between two different wall types has been made to Järntorget's request. The single wall is a prefabricated infill wall consisting of mineral wool insulation with steel bars and the other a load-bearing concrete wall with PIR insulation. The result of the comparison showed that the prefabricated infill wall was the most profitable option. A third exterior wall was also added to the comparison to find a better alternative. It is a prefabricated infill wall with PIR insulation with low proportion of continuous steel studs. The result showed that the prefabricated infill wall with PIR insulation is the better option
|
106 |
Heat transfer in upward flowing two-phase gas-liquid mixtures. An experimental study of heat transfer in two-phase gas-liquid mixtures flowing upwards in a vertical tube with liquid phase being driven by a pump or air injection.Alahmad, Malik I.N. January 1987 (has links)
An experimental investigation has been carried out to study the heat
transfer in a two-phase two-component mixture flowing upward inside
a 1" double pipe heat exchanger. The heat transfer coefficient was
measured using either air to lift the liquid (air-lift system) or
a mechanical pump.
The heat transfer coefficient results have been extensively studied
and compared with other workers' results. An attempt was made to correlate
the present heat transfer data in dimensionless correlations.
Possible factors affecting the two-phase heat transfer
coefficient have been studied with special attention being given to
the fluid properties, particularly the liquid viscosity. Experiments
were also carried out to investigate the effect of solid particles
added to a liquid flow on the measured heat transfer coefficient.
The present investigation was carried out using air as the gas-phase
ranging from 2x 10-5 up to 80 x 10-5 m3/s. Liquids used were water
and glycerol solutions with viscosity ranging from 0.75 up to 5.0
C. P. and flowrates between 4x 10-5 and 25 x 10-5 m3/s.
Void fraction and pressure drop were also measured during the
heat transfer process.
Flow pattern in gas-liquid mixture was investigated in a
perspex tube of identical dimensions to the heat exchanger tube.
|
107 |
Non-invasive Method to Measure Energy Flow Rate in a PipeAlanazi, Mohammed Awwad 08 November 2018 (has links)
Current methods for measuring energy flow rate in a pipe use a variety of invasive sensors, including temperature sensors, turbine flow meters, and vortex shedding devices. These systems are costly to buy and install. A new approach that uses non-invasive sensors that are easy to install and less expensive has been developed. A thermal interrogation method using heat flux and temperature measurements is used. A transient thermal model, lumped capacitance method LCM, before and during activation of an external heater provides estimates of the fluid heat transfer coefficient ℎ and fluid temperature. The major components of the system are a thin-foil thermocouple, a heat flux sensor (PHFS), and a heater. To minimize the thermal contact resistance 𝑅" between the thermocouple thickness and the pipe surface, two thermocouples, welded and parallel, were tested together in the same set-up. Values of heat transfer coefficient ℎ, thermal contact resistance 𝑅", time constant 𝜏, and the water temperature °C, were determined by using a parameter estimation code which depends on the minimum root mean square 𝑅𝑀𝑆 error between the analytical and experimental sensor temperature values. The time for processing data to get the parameter estimation values is from three to four minutes. The experiments were done over a range of flow rates (1.5 gallon/minute to 14.5 gallon/minute). A correlation between the heat transfer coefficient ℎ and the flow rate 𝑄 was done for both the parallel and the welded thermocouples. Overall, the parallel thermocouple is better than the welded thermocouple. The parallel thermocouple gives small average thermal contact resistance 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅"=0.00001 (𝑚2.°C/𝑊), and consistence values of water temperature and heat transfer coefficient ℎ, with good repeatability and sensitivity. Consequently, a non-invasive energy flow rate meter or (BTU) meter can be used to estimate the flow rate and the fluid temperature in real life. / MS / Today, the measuring energy flow rate, measuring flow rate and the fluid temperature, in a pipe is crucial in many engineering fields. In addition, there has been increased use of energy flow rate meters in the renewable energy system and other applications such as solar thermal and geothermal to estimate the useful thermal energy. Some of the commercial energy flow rate meters are using an invasive sensor, has to be inside the pipe, including turbine flow meter and vortex shedding device. These systems are expensive and difficult to install. A new approach that uses non-invasive sensors, attached on the outside of the pipe, that are easy to install and less expensive has been developed by using the heat flux and temperature measurements. A parameter estimation routine was used to analyze the data which depends on the minimum root mean square 𝑅𝑀𝑆 error between the calculated and experimental temperature values. A correlation between the unknown parameter, heat transfer coefficient (ℎ), and the measured flow rate 𝑄 was done to estimate the flow rate. The results show that the new non-invasive system has good repeatability, 15.45%, high sensitivity, and it is easy to install. Consequently, a non-invasive energy flow rate meter or (BTU) meter can be used to estimate the flow rate and the fluid temperature in real life.
|
108 |
Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced SurfacesAltalidi, Sulaiman S. 08 1900 (has links)
The objective of this research was to investigate the performance of two-phase spray cooling with HFC-134a and HFO-1234yf refrigerants using practical enhanced heat transfer surfaces. Results of the study were expected to provide a quantitative spray cooling performance comparison with working fluids representing the current and next-generation mobile air conditioning refrigerants, and demonstrate the feasibility of this approach as an alternative active cooling technology for the thermal management of high heat flux power electronics (i.e., IGBTs) in electric-drive vehicles. Potential benefits of two-phase spray cooling include achieving more efficient and reliable operation, as well as compact and lightweight system design that would lead to cost reduction. The experimental work involved testing of four different enhanced boiling surfaces in comparison to a plain reference surface, using a commercial pressure-atomizing spray nozzle at a range of liquid flow rates for each refrigerant to determine the spray cooling performance with respect to heat transfer coefficient (HTC) and critical heat flux (CHF). The heater surfaces were prepared using dual-stage electroplating, brush coating, sanding, and particle blasting, all featuring "practical" room temperature processes that do not require specialized equipment. Based on the obtained results, HFC-134a provided a better heat transfer performance through higher HTC and CHF values compared to HFO-1234yf at all tested surfaces and flow rates. While majority of the tested surfaces provided comparable HTC and modestly higher CHF values compared to the reference surface, one of the enhanced surfaces offered significant heat transfer enhancement.
|
109 |
A Novel Thermal Method for Pipe Flow Measurements Using a Non-invasive BTU MeterAlshawaf, Hussain M J A A M A 25 June 2018 (has links)
This work presents the development of a novel and non-invasive method that measures fluid flow rate and temperature in pipes. While current non-invasive flow meters are able to measure pipe flow rate, they cannot simultaneously measure the internal temperature of the fluid flow, which limits their widespread application. Moreover, devices that are able to determine flow temperature are primarily intrusive and require constant maintenance, which can shut down operation, resulting in downtime and economic loss. Consequently, non-invasive flow rate and temperature measurement systems are becoming increasingly attractive for a variety of operations, including for use in leak detection, energy metering, energy optimization, and oil and gas production, to name a few. In this work, a new solution method and parameter estimation scheme are developed and deployed to non-invasively determine fluid flow rate and temperature in a pipe. This new method is utilized in conjunction with a sensor-based apparatus--"namely, the Combined Heat Flux and Temperature Sensor (CHFT+), which employs simultaneous heat flux and temperature measurements for non-invasive thermal interrogation (NITI). In this work, the CHFT+ sensor embodiment is referred to as the British Thermal Unit (BTU) Meter. The fluid's flow rate and temperature are determined by estimating the fluid's convection heat transfer coefficient and the sensor-pipe thermal contact resistance. The new solution method and parameter estimation scheme were validated using both simulated and experimental data. The experimental data was validated for accuracy using a commercially available FR1118P10 Inline Flowmeter by Sotera Systems (Fort Wayne, IN) and a ThermaGate sensor by ThermaSENSE Corp. (Roanoke, VA). This study's experimental results displayed excellent agreement with values estimated from the aforementioned methods. Once tested in conjunction with the non-invasive BTU Meter, the proposed solution and parameter estimation scheme displayed an excellent level of validity and reliability in the results. Given the proposed BTU Meter's non-invasive design and experimental results, the developed solution and parameter estimation scheme shows promise for use in a variety of different residential, commercial, and industrial applications. / MS / This work documents the development of a novel and non-invasive method that measures fluid flow rate and temperature in pipes. While current non-invasive flow meters are able to measure pipe flow rate, they cannot simultaneously measure the internal temperature of the fluid flow, which limits their widespread application. Moreover, devices that are able to determine flow temperature are primarily intrusive and require constant maintenance, which can shut down operation, resulting in downtime and economic loss. Consequently, non-invasive flow rate and temperature measurement systems are becoming increasingly attractive for a variety of operations, including for use in leak detection, energy metering, energy optimization, and oil and gas production, to name a few. This paper presents a new method that utilizes a non-invasive British Thermal Unit (BTU) Meter based on Combined Heat Flux and Temperature Sensor (CHFT+) technology to determine fluid flow rate and temperature in pipes. The non-invasive BTU Meter uses thermal interrogation to determine different flow parameters, which are used to determine the fluid flow rate and temperature inside a pipe. The method was tested and validated for accuracy and reliability through simulations and experiments. Given the proposed BTU Meter’s noninvasive design and excellent experimental results, the developed novel sensing method shows promise for use in a variety of different residential, commercial, and industrial applications.
|
110 |
ANVÄNDNING AV VAKUUMISOLERING I EN NÄRA-NOLLENERGIVILLA; MÖJLIGHETER OCH BEGRÄNSNINGAR / APPLICATION OF VACUUM INSULATION IN A NEARLY ZERO ENERGY BUILDING; POSSIBILITIES AND LIMITATIONSSkarin, Erik, Carlsson, Andreas January 2016 (has links)
Objectives set by the EU means that all buildings after 2020 has to be nearly zero energy buildings. This means that thicker layers of insulation have to be added in the wall construction which makes the wall thicker. It means that the living area will be reduced. Vacuum insulation is a highly effective type of insulation and because of its low thermal conductivity it has the ability to reduce the thickness in wall structures. This project investigates a proposal to apply vacuum insulation in one-storey buildings. In order to achieve the goals of the project, a proposal for a one-storey building was developed. Calculations have been made and the proposal was developed as an alternative to show how to construct a family home containing vacuum insulation. The empirical data was collected through interviews, document analysis and literature studies. The collected data was analyzed together with the theoretical framework that has been developed through literature studies and document analysis. Creating a wall construction containing vacuum insulation as a primary insulation usually means that the wall will be considerably thinner than a wall construction with traditional insulation. This means that living area can be saved. Vacuum insulation has to be protected properly as it is easily punctured where upon it loses the most of its insulation capacity. Vacuum insulation is not common on the Swedish construction market today, this is due to many factors, including its high price. Vacuum insulation is a good problem solver which can be used in bay windows to gain extra space. One can also make use for it in tight spaces. From an economic point of view vacuum insulation offers the greatest advantages in cities where living space is considerably higher than in rural areas. To take part of the work there is no need for prior knowledge about vacuum insulation. The project focuses only on wall structures in the single-storey villas, therefor, no indentations has been made on the floor- and roof structures or other building types. The project only focuses on newly constructed buildings. No calculations are made for moisture or production costs. / Mål uppsatta av EU innebär att samtliga byggnader som uppförs vid år 2020 måste vara nära-nollenergihus. För väggarna i konstruktionen innebär det att tjockare lager av isolering måste adderas vilket ger bredare väggkonstruktioner. Bredare väggkonstruktioner innebär även att boarean minskas. Vakuumisolering är ett högeffektivt isoleringsmaterial som genom sin låga värmeledningsförmåga har möjligheten att minska tjockleken vid väggkonstruktioner på grund av dess tunna skikt. Arbetet utreder ett förslag att applicera vakuumisolering i enplansvillor. För att uppnå arbetets mål har ett förslag på enplansvilla tagits fram. Beräkningar har gjorts och förslaget är framtaget som ett alternativ för att visa hur en villa innehållande vakuumisolering kan utformas. Det empiriska materialet har samlats in genom intervjuer, dokumentanalyser samt litteraturstudier. Empirin analyseras sedan tillsammans med det framtagna teoretiska ramverket genom litteraturstudier och dokumentanalyser. Att skapa en väggkonstruktion med vakuumisolering som primär isolering betyder oftast att väggen blir avsevärt mycket tunnare än en väggkonstruktion av traditionell isolering, vilket betyder att boarea kan sparas. Vakuumisolering måste skyddas på rätt sätt i väggkonstruktioner eftersom materialet lätt punkteras varpå det förlorar den största delen av sin isoleringsförmåga. Idag är inte vakuumisolering utbrett på den svenska byggmarknaden vilket beror på många faktorer, bland annat dess höga pris. Vakuumisolering är en väldigt bra problemlösare som med fördel kan användas i burspråk för att vinna extra utrymme. Det kan även användas i trånga utrymmen som elnischar. Ur ekonomisk synpunkt ger vakuumisolering störst fördel i städer där boarea per kvadratmeter är högre än motsvarande på landsbygden. För att ta del av arbetet krävs inga förkunskaper om vakuumisolering. Arbetet fokuserar endast på väggkonstruktioner i enplansvillor, därför har inga fördjupningar skett på golv- och takkonstruktioner eller andra byggnadstyper. Enbart nybyggnationer av trästommar är utrett. Beräkningar är inte gjorda för fukt och produktionskostnader.
|
Page generated in 0.1067 seconds