• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 43
  • 28
  • 16
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 213
  • 213
  • 43
  • 42
  • 37
  • 37
  • 30
  • 30
  • 24
  • 21
  • 20
  • 19
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Entwicklung einer Version des Reaktordynamikcodes DYN3D für Hochtemperaturreaktoren

Rohde, Ulrich, Apanasevich, Pavel, Baier, Silvio, Duerigen, Susan, Fridman, Emil, Grahn, Alexander, Kliem, Sören, Merk, Bruno 12 December 2012 (has links) (PDF)
Basierend auf dem Reaktordynamikcode DYN3D für LWR, wurde die Codeversion DYN3D-HTR für das Blockkonzept eines graphit-moderierten, helium-gekühlten Hochtemperaturreaktors entwickelt. Diese Entwicklung umfasst die: • methodische Weiterentwicklung der 3D stationären Neutronenflussberechnung für hexagonale Geometrie (HTR-Brennelement-Blöcke), • Generierung von Wirkungsquerschnittsdaten unter Berücksichtigung der doppelten Heterogenität, • Modellierung der Wärmeleitung und des Wärmetransports in der Graphitmatrix. Die nodale SP3-Neutronentransport-Methode in DYN3D wurde auf hexagonale Brennelementgeometrie erweitert. Es wird eine Unterteilung der Hexagone in Dreiecke vorgenommen, so dass die Verfeinerung hexagonaler Strukturen untersucht werden kann. Die Verifikation erfolgte durch Vergleiche mit Monte-Carlo-Referenzlösungen. Für die Behandlung der doppelten Heterogenität der Brennelementstruktur bei Homogenisierung der Wirkungsquerschnitte wurden neue Methoden entwickelt. Zum einen wurde ein zweistufiges Homogenisierungsverfahren basierend auf der Methode der sog. Reactivity Equivalent Transformation (RPT) weiterentwickelt. Zum anderen ermöglichte die Verfügbarkeit des neuen Monte-Carlo-Codes SERPENT die Anwendung eines einstufigen Verfahrens, wobei die 3D heterogenen Strukturen in einem Rechenschritt konsistent erfasst werden können. Weiterhin wur-de in DYN3D ein 3D Wärmeleitungsmodell implementiert, das den radialen und axialen Wärmetransport in der Graphitmatrix beschreiben kann. DYN3D-HTR wurde schließlich anhand der Testfälle für Reaktivitätstransienten erprobt. Die Verifikation erfolgte durch Vergleich zwischen 3D und 1D Berechnung der Wärmeleitung. Schließlich wurde DYN3D mit dem CFD-Code ANSYS-CFX gekoppelt, um auch dreidimensionale Strömungen in Reaktorkernen berechnen zu können. Der Kern wird als poröser Körper modelliert. Die Kopplung wurde an anhand von 2 Testbeispielen, dem Auswurf eines Steuerstabes und einer lokalen Strömungsblockade in einem Brennelement, erprobt.
142

放熱量最大化を目的とした非定常熱伝導場の形状最適化

AZEGAMI, Hideyuki, IWATA, Yutaro, KATAMINE, Eiji, 畔上, 秀幸, 岩田, 侑太朗, 片峯, 英次 07 1900 (has links)
No description available.
143

非定常熱伝導場における形状同定問題の解法

片峯, 英次, Katamine, Eiji, 畔上, 秀幸, Azegami, Hideyuki, 松浦, 易広, Matsuura, Yasuhiro 01 1900 (has links)
No description available.
144

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
145

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
146

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
147

Estudos calorimétricos da adsorção e liberação da pirimetamina e sulfadiazina em matriz de quitosana quimicamente modificada

Lima, Patrícia Soares de 21 May 2009 (has links)
This work aimed to study the interaction of the drug pyrimethamine (PIR) and sulfadiazine (SDZ) with the biopolymer chitosan chemically modified with glutaraldehyde, after immobilization of copper (Quit-Cu). The release of these drugs in buffer pH 7.0 was also studied by heat-conduction calorimetry at 298 K. The matrices of chitosan modified with glutaraldehyde (QUIT-GLT) were used for immobilization of ions Cu (II), obtaining the material Quit-Cu. This material has 2.347 x 10-5 mol.g-1 of copper. It was obtained values of the interaction energies (Qint) and the amount of PIR and SDZ interacting with Quit-Cu matrix (Nint) at 298 K. Langmuir isotherm described the adsorption equilibrium behaviour in the entire concentration range studied. Negative values found for Gibbs free energy of the PIR and SDZ, ΔG = -16.7 ± 0.4 KJmol-1 and ΔG = - 15.7 ± 0.6 KJmol-1 respectively, confirm the feasibillity of procedures and their spontaneous nature. The release of the drugs from Quit-Cu was also estimated by calorimetry. The data obtained could be described by the model of Power Low. The n values obtained from the fits indicate an anomalous release of PIR and SDZ from Quit-Cu. PIR had a release rate higher than SDZ and a time of release lower than SDZ ( k = 11,31x10-2, 36 min to PIR and K=8,84x10-2, 60 min to SDZ). The results of PIR release were about 40 times greater than the inhibitory concentration dose of the PIR to toxoplasmosis DHFR (0.25 μM), suggesting that the material could be a good carrier to this drug. / Este trabalho teve como objetivo o estudo da interação dos fármacos pirimetamina (PIR) e sulfadiazina (SDZ) com o biopolímero quitosana modificado quimicamente com gluteraldeído e tendo cobre imobilizado (Quit-Cu), bem como o estudo de liberação desses fármacos em tampão pH 7,0 através da calorimetria isotérmica. As matrizes de quitosana modificadas com gluteraldeído (Qui-GLT) foram utilizadas para imobilização de íons Cu(II), obtendo o material Quit-Cu contendo 2,347 x 10-5 mols.g-1 de cobre. Utilizando a calorimetria isotérmica obtiveram-se valores das energias de interação (Qint) e da quantidade de fármaco que interage (Nint) com a matriz Quit-Cu, a 298 K. Os dados obtidos ajustaram-se ao modelo de Langmuir. Valores negativos encontrados para a energia livre de Gibbs da PIR e da SDZ, ΔG = −16,7 ± 0,4 KJmol−1 e ΔG = − 15,7 ± 0,6 KJmol−1 respectivamente, confirmam a viabilidade dos processos e a natureza espontânea dos mesmos. O processo de liberação dos fármacos da matriz Quit-Cu também foi avaliado por calorimetria e os dados obtidos ajustados ao modelo da lei das potências. Os valores de n obtidos dos ajustes indicam que tanto a PIR como a SDZ tem mecanismo de liberação anômalo. A PIR teve uma taxa de liberação maior da matriz Quit-Cu com um tempo menor (k = 11,31x10-2 em 36min) em relação à SDZ (k=8,84x10-2 em 60min). Os resultados de liberação da PIR foram cerca de 40 vezes maior que a concentração da dose inibitória da PIR para DHFR da toxoplasmose (0,25μM), existindo, portanto possibilidades de ser um bom carreador deste fármaco.
148

Värmekamera i fysikundervisning : En undersökning av hur värmekameran kan stimulera inlärningen av värmerelaterade fenomen

Torstensson, Anton January 2017 (has links)
Värmelära upplevs ofta som ett abstrakt område i gymnasiefysiken och elever tenderar att tolka känseln som en termometer. Värmelära kan därmed bli en tuff utmaning för många elever. Genom att introducera värmekameror i undervisningen ges elever möjligheten att se annars osynliga värmefenomen. Eftersom värmekameran inte ännu blivit etablerad i undervisningen finns det ett intresse att studera elevernas interaktion med värmekameran. Syftet med studien är att undersöka hur interaktionen ser ut och hur värmekameran kan hjälpa elever i begreppsbildandet av värmerelaterade fenomen. Denna studie har gjorts på ca 140 elever som går sitt första år på det naturvetenskapliga programmet på en gymnasieskola i Mellansverige. Eleverna fick utföra en laboration designad enligt prediction-observation-explanation-metoden. Laborationen innehöll tre stationer där de centrala begreppen var värmeledning, stöt och friktion. Eleverna använde en värmekamera som hjälpmedel för att förklara de olika fenomenen. Elevernas interaktioner vid laborationen dokumenterades med video- och ljudupptagning i syfte att ge grund för en kvalitativ analys. Analysen av materialet kom att handla om tre delar: hur eleverna resonerar kring värmeledning, respektive friktion och stöt, och hur värmekameran kan stimulera det kreativa tänkandet hos eleverna. Det visade sig att många elevgrupper kom långt i det makroskopiska och en bra bit i det mikroskopiska resonemanget kring värmeledning genom att tillämpa en modell av fria elektroner i metall de hade lärt sig från kemin. De flesta grupperna hade svårt att resonera kring energiomvandlingar vid stöt både på en makroskopisk och mikroskopisk nivå. Det kreativa undersökandet resulterade i en röra. Värmekameran lockar elevernas nyfikenhet, ger ”disciplinary affordance” och stimulerar dem till ”instant inquiry”. När eleverna gick utanför instruktionerna och bedrev egna undersökningar resulterade det i en röra då de prioriterade bort sina nykonstruerade hypoteser. / Thermodynamics is often perceived as an abstract field in secondary school physics. Thermodynamics can thus be a tough challenge for many students. By including thermal imaging cameras in teaching, students are given the opportunity to see otherwise invisible thermal phenomena. Since the infrared camera has not yet been established in teaching, there is an interest in studying the interaction between students and the thermal imaging camera. The purpose of this study is to investigate the interaction between student and the infrared camera and to see how the infrared camera can help students in the conceptual formation of heat-related phenomena. The study included about 140 students attending their first year on the science program at an upper secondary school in central Sweden. The students had to perform laboratory experiments designed according to the prediction-observation-explanation method. The laboratory experiments consisted of three stations where the key concepts were heat conduction, collision and friction. Students took help of an infrared camera to explain the various phenomena. The students' interactions at the lab were documented with video and audio recording in order to set the basis of a qualitative analysis. The analysis of the material consisted of three parts: how students reason concerning heat conduction, their reasoning concerning dissipative processes as friction and collision, and how the infrared camera can stimulate the students' creative thinking. Many student groups were successful in the macroscopic and quite successful in the microscopic reasoning regarding heat conduction by applying a model of free electrons in the metal which they had learned in chemistry class. Other studies have shown that students find it hard explaining heat conduction and that they tend to interpret the physical touch as a thermometer. The group that examined friction and collision found it difficult explaining the transformation from kinetic energy into thermal energy in collision at both the macroscopic and microscopic level. The creative investigation resulted in a mess. The infrared camera attracts students' curiosity, gives ”disciplinary affordance” and stimulates them to ”instant inquiry”. When the students went beyond their instructions and conducted own investigations it resulted in a mess when they prioritized away the recently created hypotheses.
149

Virtual experiments and designs of composites with the inclusion-based boundary element method (iBEM)

Wu, Chunlin January 2021 (has links)
This dissertation develops and implements an effective numerical scheme, the inclusion-based boundary element method (iBEM), to investigate the mechanical and multi-physical properties of the composites containing arbitrarily shaped particles. Besides the linear elasticity and transient heat conduction problems shown in the dissertation, it can be extended to other problems, such as potential flows and Stokes flows. Through the combination of conventional boundary element method (BEM) and the Eshelby's equivalent inclusion method (EIM), the local field is obtained through superposition of the domain integral of eigen-fields and boundary integral equations. Firstly, the boundary value problems of a composite containing various fully bonding phases of subdomains is introduced. Due to the continuity of displacement (potential) and traction (flux) at the interfaces between different material phases, the interfacial continuity equations are established, which can be solved with the multi-region BEM conventionally. Thanks to Eshelby's celebrated contribution, the material difference in inhomogeneity problems is simulated by an eigenstrain on the inclusion domain but with the same material properties as the matrix. Therefore, the boundary value problems with inhomogeneities can be transformed as domain integral of Green's function with the eigenstrain over the inclusion, where can be determined by the equivalent stress conditions in EIM. Hence, the algorithm of iBEM is formulated and established on the basis of boundary conditions and equivalent stress equations instead of various continuity constraint equations, which saves efforts in computational resources and pre/post-process. The domain integral of Green's function is the key to the algorithm of iBEM, as it bridges the inhomogeneities and the boundary. The closed-form expression of domain integrals for ellipsoidal / elliptical inclusions with polynomial eigenstrain, polygonal and polyhedral inclusions with constant eigenstrain have already existed in the literature. However, it is not applicable to arbitrary particles with varying eigenstrain. This dissertation derives the closed-form domain integrals for polygon and polyhedral inclusions with polynomial eigenstrain source terms, which creates feasibility to solve the local field and effective material properties for composites with arbitrary particles. Although the EIM with polynomial-form eigenstrain has been applied to simulate the material mismatch for ellipsoidal / elliptical inhomogeneities by using the Taylor's of eigenstrain field at the particle center, when it is extended to angular particles, the inaccuracy is significantly reduced due to the rapid and complicated eigenstrain variation in the neighborhood of vertices with the strong singular effects. Therefore, the domain discretization of an angular particle is proposed to tackle the complicated distribution of elastic fields, which keeps the features of exactness (no approximation of interior field) and 𝐂⁰ continuity of eigenstrain. Hereby, the iBEM is proposed to serve as an effective and powerful tool, which takes the advantages of both BEM and EIM. The interaction of inhomogeneities is considered in the process of constructing EIM equations, and boundary effects are taken into account as the contribution to displacement of the eigen-field over inhomogeneities, hence, a complete linear equation system can be established. For the inclusion problems with a prescribed eigenstrain, no domain discretization is required because the exact elastic solution is obtained given the specific dimension of the geometry. Regarding to inhomogeneity problems, 1) the ellipsoidal / elliptical shape is versatile, which could be switched to various of shapes by adjusting the aspect ratio and orientations; 2) though the angular subdomain requires discretization, this method is rapidly convergent and no mesh is needed for the matrix. Therefore, this method enables the simulation of thousands 3𝐷 and 2𝐷 arbitrary shaped particles in a desk-top computer and the effective moduli can be obtained through virtual experiments (i.e, uni-axial loading) or periodic boundary conditions. This method can be easily extended to multi-physical problems, such as transient hear transfer, steady state heat, through changing the fundamental solutions accordingly. Three major packages have been added to the iBEM software, as transient heat transfer, closed-form 2D/3D domain integrals, and domain discretization method. Some case studies demonstrate the capability and applications of this method and software. This main contributions of the PhD studies are as follows: 1) The closed-form domain integrals for polygonal and polyhedral inhomogeneities have been derived based on the gravitational potential theory and transformed coordinates. The solutions are verified with the classic solution of circular and spherical potentials with polynomial source terms (i.e, linear and quadratic) by using many triangular and tetrahedral elements. It enables to solve the inhomogeneity problems with arbitrary particles. 2) Due to the discontinuity on the surfaces and edges of the subdomains and strong singular effects on the vertices, the variation of eigenstrain field is complicated in the neighborhood of edges and vertices. The domain discretization approach is proposed to provide a rapid convergent and effective solution in the infinite space. Different from the Taylor's expansion, the eigenstrain is assigned exactly at the nodes with shape functions instead of at the centroid of the elements, therefore, a 𝐂⁰ continuity is enforced. Here 3-node, 6-node triangular elements and 4-node, 10-node tetrahedral elements are implemented in the code of iBEM, which agree well with FEM but with much fewer of elements. Other types of element are also implementable in the same fashion. 3) The discretization method is applied to investigate the stress singularities of a vertex on an isosceles triangle embedded in an unbounded matrix. Two types of stress singularities are investigated: when the load is applied to the triangular inclusion with the same stiffness as the matrix, the singularity is caused by the irregular load distribution, namely load singularity, and can be exactly evaluated by integral of the potentials on the source with Eshelby's tensor. The second singularity, namely material singularity, is caused by the stiffness mismatch between the triangular inhomogeneity and the matrix under a uniform far field stress, in which the material mismatch is simulated by an eigenstrain. The relationship between the load singularity and material singularity is investigated, and the linkages of these singularities with line distributed force, cracking, and point force are discussed. 4) A parametric study of accuracy on stress field for uniform, linear and quadratic eigenstrain fields was performed and case studies have been presented to demonstrate the capability of iBEM for virtual experiments of ellipsoidal / elliptical inhomogeneities. Subsequently, combining the domain discretization method, iBEM is also applied to study the local elastic fields of the angular inhomogeneities. The effective material behavior is obtained with either large number of particles or periodic boundary condition (PBC) and some interesting discoveries of microstructure-dependent material behavior are reported with the aid of virtual experiments. 5) The iBEM is extended to multiphysical problems. The temperature and hear flux fields of composite materials containing phase change materials (PCM) for energy efficient buildings is demonstrated. Different from the static EIM, the thermal property mismatch between PCM particle and matrix phase is simulated with a uniformly distributed eigen-temperature gradient field and a fictitious heat source on the particle. With the equivalent heat flux conditions and the specific heat-temperature relationship, the eigen-temperature gradient and fictitious heat source can be solved and temperature field of the bounded domain can be calculated. Verified with FEM and laboratory measurements of the transient heat transfer within a building block containing a PCM capsule. Parametric studies have also been conducted to study the influences of the PCM location and volume fraction on the temperature fields of composites with multiple particles. The virtual experiments demonstrate the energy saving and phase delay by using the PCM-concrete wall panel. In summary, the proposed iBEM algorithm bridges the gap between conventional EIM and BEM for virtual experiments of composites samples. The combination of shape functions and domain integrals of polygonal / polyhedral subdomain enables its application to arbitrary shaped particles. It serves as a powerful tool to conduct virtual experiments for composite materials with various geometry and investigate the effective moduli under uni-axial load of samples with large number of particles or under the periodic boundary condition. In the future, the iBEM will be implemented for time independent and dependent nonlinear behavior of composites, such as elastoplastic, viscoelastic, and dynamic elastic problems. In addition to the current parallel computing scheme, GPU can be employed to speed up particle - particle interactions.
150

Pokročilé metody pro inverzní úlohy vedení tepla / Advanced Inverse Heat Conduction Methods

Komínek, Jan January 2018 (has links)
Numerical simulations of thermal processes are based on known geometry, material properties, initial and boundaries conditions. The massive use of these simulations in the metallurgical industry (for example for simulation of heat treatment of steel) is limited by the knowledge of precise boundary conditions, which are not easy to determine in compare to other input parameters. Empirical formulas are not sufficiently accurate for most non-trivial processes. Therefore, it is necessary to obtain the boundary conditions by experimental way. Boundary conditions can not be measured directly. The boundary conditions are determined by solving inverse heat conduction problem based on the measured temperature records. This doctoral thesis focuses on two types of the inverse heat conduction problems, which are poorly solved by existing methods. The first type are tasks that contains sharp increase/decrease in the values of the boundary conditions. Two new approaches are proposed and compared in this thesis for this type of tasks. The second type are tasks with non-stationary and non-homogeneous cooling. Three new methods were developed for this case. They are applied for the case of water cooling of vertical aluminum sample. The base characteristics of the current task is inhomogeneous cooling. One part of the surface is cooled intensively by flowing water in contrast to the other part of surface which is cooled only with low intensity since it is protected from direct contact with water by the vapor layer (Leidenfrost effect). The positions of these two part of surface are not stationary (they change during the experiment). The newly developed methods are compared to each other.

Page generated in 0.1052 seconds