• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 72
  • 72
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Impact of moisture on long term performance of insulating products based on stone wool

Vrána, Tomás January 2007 (has links)
Demands for energy have been increasing in the whole world. According to higher consumption, the price of energy rises yearly too. This evokes usage of insulating products in a wider range. By adding insulation, we lower the amount of energy needed to heat our homes, resulting in fewer associated greenhouse gas emissions and a lower monthly heating bill. Savings depend on insulation thicknesses and on conditions, in which the insulant is kept. Mineral insulation based on stone wool is also a member of building insulants that defends buildings and constructions against temperature changes of the ambient. However, even when we use modern technologies and building techniques to reduce high energy losses, we can never provide unimpeachable protection of stone wool from damage. During a construction process on a building site or at fast climate changes, it often happens that stone wool is exposed to rain precipitaions or other climate effets. This brings water to the insulating structure. Besides the loss of insulating qualities, the stone wool is left permanently wet. Even the fibres of stone wool are inorganic, they still can be attacked by degradation processes due to organic agents fixing fibres together. Analysis of damaged flat-roof constructions using stone wool and verification of material properties is a starting point of this licentiate thesis. The attached paper section can be divided into two parts: In-situ practice that notes troubles with insulating materials based on stone wool with inbuilt moisture on a building site Laboratory measurement that observe material properties of stone wool under varying conditions / QC 20101122
42

REACTIVE TRANSPORT MODELLING OF DISSOLVED CO2 IN POROUS MEDIA : Injection into and leakage from geological reservoirs

Ahmad, Nawaz January 2016 (has links)
The geological sequestration of carbon dioxide (CO2) is one of the options of controlling the greenhouse gas emissions. However, leakage of CO2 from the storage reservoir is a risk associated with geological sequestration. Over longer times, large-scale groundwater motion may cause leakage of dissolved CO2 (CO2aq). The objectives of this thesis are twofold. First, the modelling study analyzes the leakage of CO2aq along the conducting pathways. Second, a relatively safer mode of geological storage is investigated wherein CO2aq is injected in a carbonate reservoir. A reactive transport model is developed that accounts for the coupled hydrological transport and the geochemical reactions of CO2aq in the porous media. The study provides a quantitative assessment of the impact of advection, dispersion, diffusion, sorption, geochemical reactions, temperature, and heat transport on the fate of leaking CO2aq. The mass exchange between the conducting pathway and the rock matrix plays an important role in retention and reactions of leaking CO2aq. A significant retention of leaking CO2aq is caused by its mass stored in aqueous and adsorbed states and its consumption in reactions in the rock matrix along the leakage pathway. Advection causes a significant leakage of CO2aq directly from the reservoir through the matrix in comparison to the diffusion alone in the rock matrix and advection in a highly conducting, but thin fracture. Heat transport by leaking brine also plays an important role in geochemical interactions of leaking CO2aq.  Injection of CO2aq is simulated for a carbonate reservoir. Injected CO2-saturated brine being reactive causes fast dissolution of carbonate minerals in the reservoir and fast conversion of CO2aq through considered geochemical reactions. Various parameters like dispersion, sorption, temperature, and minerals reaction kinetics are found to play important role in the consumption of CO2aq in reactions. / <p>Research Funders:</p><p>(i) Higher Education Commission (HEC) of Pakistan</p><p>(ii) Lars Erik Lundberg Scholarship Foundation, Sweden</p>
43

Temperatureffekte bei der lasererzeugten Kavitation / Thermal effects in laser-generated cavitation

Söhnholz, Hendrik 26 October 2016 (has links)
No description available.
44

Gestion de l'émission spontanée amplifiée et de la thermique d'un système laser solide de haute puissance moyenne pompée par diodes – le système laser Lucia

Albach, Daniel 28 April 2010 (has links) (PDF)
Le développement du laser a ouvert la voix à l'exploration de nouveaux domaines scientifiques et industriels. Les impulsions laser à haute intensité sont un outil unique pour les études d'interaction lumière/matière et leurs applications. Mais elles sont générées par des systèmes laser reposant sur l'utilisation de milieux à gain en verre pompés par des lampes flashes et sont donc intrinsèquement limitées en termes de cadence et d'efficacité. Le développement, au cours de ces dernières années, des lasers semi-conducteurs a attiré l'attention sur une nouvelle classe de lasers, les « laser solides pompés par diodes » (DPSSL). Ils possèdent une grande efficacité et sont des candidats de choix pour les systèmes compacts à haute puissance moyenne requis pour des applications industrielles, mais aussi en tant que sources de pompe à haute puissance pour des lasers ultra-intenses. Les travaux décrits dans cette thèse s'inscrivent dans le cadre du système laser Lucia (1 kilowatt de puissance moyenne), actuellement en construction au «Laboratoire d'Utilisation des Intenses lasers» (LULI) à l'Ecole Polytechnique, France. La génération d'impulsions laser de durée sub-10 nanosecondes avec des énergies allant jusqu'à 100 joules et des taux de répétition de 10 hertz est principalement limitée par l'émission spontanée amplifiée (ASE) et les effets thermiques. L'étude de ces limitations est le thème central de ce travail. Leur impact est discuté dans le cadre d'un premier jalon énergétique fixé vers 10 joules. Le système laser mis au point est présenté en détails depuis l'oscillateur jusqu'à la fin de la chaine d'amplification. Une discussion complète de l'impact de l'ASE et des effets thermiques est complétée par des vérifications expérimentales. Les modèles de simulation informatique développés sont validés puis utilisés pour prédire les performances du système laser qui, lors d'une première activation, à atteint un niveau d'énergie de 7 joules en régime mono-coup et de 6,6 joules pour un taux de répétition de 2 hertz. Les limitations actuelles sont discutées ainsi que les approches envisagées pour des développements futurs.
45

Evaluating Innovative Nutrient Management Options and Seasonal Groundwater Recharge Dynamics in an Agricultural Source Water Protection Area

Brook, Jacqueline Marie 29 August 2012 (has links)
This thesis presents two interrelated studies that consider nutrient management and seasonal changes in recharge on agricultural lands within the context of source water protection. The research focuses first on the management of the risk to groundwater quality through the implementation of various nutrient management practices and secondly considers the dynamic nature of the transport pathway to the groundwater system associated with seasonal changes in climate and hydrology. The combined results provide insight into several of the key factors influencing the protection of groundwater sources within the agricultural landscape. Field work was completed between 2009 and 2010 on an agricultural field near the City of Woodstock, Ontario. The site is located within a source water protection area; the two-year travel time zone of the Thornton Well Field which represents the primary water supply for the City of Woodstock and which has experienced chronic increases in nitrate concentrations over the last few decades. The wells are completed in glacial overburden consisting of intermingling sand and gravel till aquifers which overly a limestone bedrock aquifer. Agricultural best or beneficial management practices (BMPs) field have been implemented and monitored since 2004. The BMPs were adopted in order to reduce nitrogen losses to the aquifer, and consisted of a reduction in nitrogen fertilizer application rates over a series of agricultural fields located near the well The first study is a one year experiment designed to compare alternative nutrient management practices for corn. Combinations of fertilizer treatments with or without a legume cover crop (red clover) were assessed. The fertilizer treatments studied were: a polymer coated urea (slow-release fertilizer) applied at planting, a conventional urea applied at planting, side-dress treatment of a solution of urea and ammonium nitrate in water containing 28% nitrogen with two different application rates applied in the early summer, and a control. The legume cover crop was incorporated in the soil in the previous fall, and acts as a slow release fertilizer as nitrogen is made available to the following crop as the plants decompose. Treatments were compared based on crop yield, overall economic return, and the potential for nitrate leaching. The potential for nitrate leaching was evaluated with bi-weekly shallow soil core during the growing season, and deep soil cores taken before planting, after harvest and the following spring. The deep cores allowed changes in nitrate storage below the rooting zone to be assessed. The results of this study highlight the importance of timing of fertilizer applications and rate of fertilizer applications. Treatments which provide a delay in the release or application of fertilizer, the polymer-coated urea, the calculator-rate side-dress and the clover cover crop, were found to be advantageous. The polymer-coated urea treatments and side-dress treatments were found to reduce leaching compared to the conventional urea treatment. Treatments with the clover cover crops were not found to reduce crop yields or increase leaching potential, and lower fertilizer costs associated to this practice were found to have a positive economic effect. Plots treated with the high-rate side-dress fertilizer application lost more nitrate to the subsurface compared to the other treatment options, and an economic disadvantage was observed as yields did not compensate for higher fertilizer costs. The study highlights the advantages of the different treatments under study, which may be used to inform policy makers and farmers in the selection of economically and environmentally sustainable nutrient management BMP options. Groundwater monitoring at the site over the years has indentified interesting recharge dynamics, particularly in the vicinity of an ephemeral stream which develops annually during spring and winter melt events in a low lying area of the study site. It was hypothesized that rapid recharge could occur beneath the stream allowing for surface water to quickly reach groundwater, posing a threat to municipal water wells. The current framework of source water protection does not take into account the potential risk posed by this type recharge event. At this field site, rapid infiltration associated with this type of event may pose a risk to drinking water quality due to the proximity of the stream to the pumping wells and the nature of the aquifer. The second study examines rapid groundwater recharge processes beneath the ephemeral stream during the course of a spring melt in 2010. The goals of the study were to quantify recharge at one location beneath the stream and to assess whether temperature variations above the water table can be used as a tracer to reasonably estimate recharge during a short live recharge event. A novel housing for the temperature sensors was designed in order to deploy and position them into gravelly materials within the vadose zone, which reduced the potential for the formation of preferential pathways and permitted the retrieval of the sensors at a later date. Field data were collected during the course of the spring melt period from a network of groundwater monitoring wells and subsurface temperature sensors. Spatial and temporal changes in groundwater geochemistry, hydraulic head and temperature were were used to characterize recharge dynamics at the field site. Recharge beneath a segment of the ephemeral stream was quantified through the numerical analysis of the field data using Hydrus 1-D, a one-dimensional numerical model designed to simulate soil water flow and heat transport in variably saturated porous media. Site specific data were used to create the model domain, provide estimates of physical parameters, and to define initial and time variable boundary conditions. Model parameters were first calibrated by simulating periods where it was expected that soils would be gravity drained with minimal soil water flow, and then further refined by simulating the period when the ephemeral stream was present. A final set of parameters was determined, and the initial gravity drained conditions were re-simulated. The model was able to reproduce field observations under different flow scenarios using the final set of parameters, suggesting that the conceptual model and final model domain representative of the actual field conditions. The successful simulation of the field data sets under the different flow scenarios also increases confidence in the uniqueness of the model results. The model estimated that 0.15 m of recharge occurred beneath the instrumented site during the period between March 9th and March 22nd of 2010 when the ephemeral stream was present. This represents approximately a third of the expected total annual recharge for this location. Regional changes in hydraulic head, groundwater temperature and groundwater chemistry provided additional insight into the dynamic nature of the recharge process during the spring meld period and further illustrated the spatial variability of the aquifers’ response to the stream. The study found that the use of temperature as a tracer provided useful and quantifiable insight into recharge phenomena. The results of this study suggest that high rates of rapid recharge occur beneath the ephemeral stream, and are spatially variable. This type of focused infiltration that occurs during the spring melt may represent a risk to municipal water quality if the infiltrating waters are carrying contaminants.
46

Influence of faults on the 3D coupled fluid and heat transport

Cherubini, Yvonne January 2013 (has links)
Da geologische Störungen können als Grundwasserleiter, -Barrieren oder als gemischte leitende /stauende Fluidsysteme wirken. Aufgrund dessen können Störungen maßgeblich den Grundwasserfluss im Untergrund beeinflussen, welcher deutliche Veränderungen des tiefen thermischen Feldes bewirken kann. Grundwasserdynamik und Temperaturveränderungen sind wiederum entscheidende Faktoren für die Exploration geothermischer Energie. Diese Studie untersuchte den Einfluss von Störungen auf das Fluidsystem und das thermische Feld im Untergrund. Sie erforschte die physikalischen Prozesse, welche das Fluidverhalten und die Temperaturverteilung in Störungen und in den umgebenden Gesteinen. Dazu wurden 3D Finite Elemente Simulationen des gekoppelten Fluid und Wärmetransports für synthetische sowie reale Modelszenarien auf unterschiedlichen Skalen durchgeführt. Um den Einfluss einer schräg einfallenden Störung systematisch durch die schrittweise Veränderung der hydraulischen Öffnungsweite und der Permeabilität, zu untersuchen, wurde ein klein-skaliges synthetisches Modell entwickelt. Ein inverser linearer Zusammenhang wurde festgestellt, welcher zeigt, dass sich die Fluidgeschwindigkeit in der Störung jeweils um ~1e-01 m/s verringert, wenn die Öffnungsweite der Störung um jeweils eine Magnitude vergrößert wird. Ein hoher Permeabilitätskontrast zwischen Störung und umgebender Matrix begünstigt die Fluidadvektion hin zur Störung und führt zu ausgeprägten Druck- und Temperaturveränderungen innerhalb und um die Störung herum. Bei geringem Permeabilitätskontrast zwischen Störung und umgebendem Gestein findet hingegen kein Fluidfluss in der Störung statt, wobei das hydrostatische Druck- sowie das Temperaturfeld unverändert bleiben. Auf Grundlage der synthetischen Modellierungsergebnisse wurde der Einfluss von Störungen auf einer größeren Skala anhand eines komplexeren (realen) geologischen Systems analysiert. Dabei handelt es sich um ein 3D Modell des Geothermiestandortes Groß Schönebeck, der ca. 40 km nördlich von Berlin liegt. Die Integration von einer permeablen und drei impermeablen Hauptstörungen, zeigte unterschiedlich starke Einflüsse auf Fluidzirkulation, Temperatur – und Druckfeld. Die modellierte konvektive Zirkulation in der permeablen Störung verändert das thermische Feld stark (bis zu 15 K). In den gering durchlässigen Störungen wird die Wärme ausschließlich durch Diffusion geleitet. Der konduktive Wärmetransport beeinflusst das thermische Feld nicht, bewirkt jedoch lokale Veränderungen des hydrostatischen Druckfeldes. Um den Einfluss großer Störungszonen mit kilometerweitem vertikalen Versatz auf das geothermische Feld der Beckenskala zu untersuchen, wurden gekoppelte Fluid- und Wärmetransportsimulationen für ein 3D Strukturmodell des Gebietes Brandenburg durchgeführt (Noack et al. 2010; 2013). Bezüglich der Störungspermeabilität wurden verschiedene geologische Szenarien modelliert, von denen zwei Endgliedermodelle ausgewertet wurden. Die Ergebnisse zeigten, dass die undurchlässigen Störungen den Fluidfluss nur lokal beeinflussen. Da sie als hydraulische Barrieren wirken, wird der Fluidfluss mir sehr geringen Geschwindigkeiten entlang der Störungen innerhalb eines Bereichs von ~ 1 km auf jeder Seite umgelenkt. Die modellierten lokalen Veränderungen des Grundwasserzirkulationssystems haben keinen beobachtbaren Effekt auf das Temperaturfeld. Hingegen erzeugen permeable Störungszonen eine ausgeprägte thermische Signatur innerhalb eines Einflussbereichs von ~ 2.4-8.8 km in -1000 m Tiefe und ~6-12 km in -3000 m Tiefe. Diese thermische Signatur, in der sich kältere und wärmere Temperaturbereiche abwechseln, wird durch auf- und abwärts gerichteten Fluidfluss innerhalb der Störung verursacht, der grundsätzlich durch existierende Gradienten in der hydraulischen Druckhöhe angetrieben wird. Alle Studien haben gezeigt, dass Störungen einen beachtlichen Einfluss auf den Fluid-, und Wärmefluss haben. Es stellte sich heraus, dass die Permeabilität in der Störung und in den umgebenden geologischen Schichten so wie der spezifische geologische Rahmen entscheidende Faktoren in der Ausbildung verschiedener Wärmetransportmechanismen sind, die sich in Störungen entwickeln können. Die von permeablen Störungen verursachten Temperaturveränderungen können lokal, jedoch groß sein, genauso wie die durch hydraulisch leitende und nichtleitende Störungen hervorgerufenen Veränderungen des Fluidystems. Letztlich haben die Simulationen für die unterschiedlich skalierten Modelle gezeigt, dass die Ergebnisse sich nicht aufeinander übertragen lassen und dass es notwendig ist, jeden geologischen Rahmen hinsichtlich Konfiguration und Größenskala gesondert zu betrachten. Abschließend hat diese Studie demonstriert, dass die Betrachtung von Störungen in 3D Finiten Elementen Modellen für die Simulation von gekoppeltem Fluid- und Wärmetransport auf unterschiedlichen Skalen möglich ist. Da diese Art von numerischen Simulationen sowohl die geologische Struktur des Untergrunds sowie die im Erdinnern ablaufenden physikalischen Prozesse integriert, können sie einen wertvollen Beitrag leisten, indem sie Feld- und Laborgestützte Untersuchungen vervollständigen. / Faults can act as conduits, barriers or mixed conduit/barrier systems to fluid flow. Therefore, faults may significantly influence fluid flow regimes operating in the subsurface, possibly resulting in distinct variations of the deep thermal field. Both, flow dynamics and temperature changes are in turn crucial factors that need to be taken into account for geothermal energy exploration. This study investigated the influence of faults on the subsurface fluid system and thermal field and explored the processes controlling fluid behavior and thermal distribution both within host rocks and faults. For this purpose, 3D finite element simulations of coupled fluid and heat transport have been carried out, both for synthetic and real-case model scenarios on different scales. A small-scale synthetic model was developed to systematically assess the impact of an inclined fault by changing gradually its hydraulic width and its permeability within the simulations. An observed linear inverse relationship revealed that changing the fault width by one order of magnitude results in a fluid velocity decrease (~1e-01 m/s) within the fault. A high permeability contrast between fault and matrix favors fluid advection into the fault and leads to pronounced pressure and temperature changes in and around the same domain. When the permeability contrast between fault domain and host rock is low, however, no fluid flow is observed in the fault, thus resulting in undisturbed hydrostatic pressure and temperature fields. On the basis of these synthetic fault modelling results, the influence of faults on a larger scale have been analyzed within a more complex (real-case) geological setting,- a 3D model of the geothermal site Groß Schönebeck / located ~40 km north of Berlin. The integration of one permeable and three impermeable major faults, resulted in distinct changes observed in the local fluid circulation, thermal and pressure field. Modelled convective circulation within the permeable fault decisively modifies the thermal field (up to 15 K). Within the low permeable faults, heat is transferred only by conduction, inducing no thermal imprint but local deviations of the hydrostatic pressure field. To investigate the impact of major fault zones on the basin-scale geothermal field, coupled fluid and heat transport simulations have been conducted for a 3D structural model for Brandenburg region (Noack et al. 2010; 2013). Different geological scenarios in terms of modelled fault permeability have been carried out of which two end member models are analyzed. The results showed that tight fault zones affect the flow field locally. Acting as hydraulic barriers, fluid flow is deviated with very low velocities along them within a range of ~ 1 km on either sides. The modelled local changes in the groundwater circulation system have no considerable effect on the temperature field. By contrast, permeable fault zones induce a pronounced signature on the thermal field extending over a distance of ~ 2.4-8.8 km at -1000 m depth and ~6-12 km at -3000 m depth. This thermal signature, characterized by alternating cooler and hotter temperature domains, is controlled by up- and downward directed flow within the fault domain, principally driven by existing hydraulic head gradients. All studies demonstrated that faults have a considerable impact on the fluid and heat flow. The permeability in faults and surrounding geological layers as well as the specific geological setting turned out to be crucial factors in controlling the different kinds of heat transfer mechanisms that may evolve in faults. Temperature variations caused by permeable faults may be local but significant as well as changes in fluid dynamics by both conduits and barriers. Thus, the results demonstrated the importance to consider faults in geothermal energy exploration. In the final analysis, the simulations for the small-, regional- and basin-scale models showed that the outcomes cannot be transferred by upscaling and that it is necessary to consider each geological setting separately with respect to its configuration and scale dimension. In summary, this study demonstrated that the consideration of faults in 3D finite element models for coupled fluid and heat transport simulations on different scales is feasible. As these type of numerical simulations integrate both, the structural setting of the subsurface and the physical processes controlling subsurface transport, the outcomes of this thesis may provide positive contributions in that they valuably complement field- and laboratory-based investigations.
47

Evaluating Innovative Nutrient Management Options and Seasonal Groundwater Recharge Dynamics in an Agricultural Source Water Protection Area

Brook, Jacqueline Marie 29 August 2012 (has links)
This thesis presents two interrelated studies that consider nutrient management and seasonal changes in recharge on agricultural lands within the context of source water protection. The research focuses first on the management of the risk to groundwater quality through the implementation of various nutrient management practices and secondly considers the dynamic nature of the transport pathway to the groundwater system associated with seasonal changes in climate and hydrology. The combined results provide insight into several of the key factors influencing the protection of groundwater sources within the agricultural landscape. Field work was completed between 2009 and 2010 on an agricultural field near the City of Woodstock, Ontario. The site is located within a source water protection area; the two-year travel time zone of the Thornton Well Field which represents the primary water supply for the City of Woodstock and which has experienced chronic increases in nitrate concentrations over the last few decades. The wells are completed in glacial overburden consisting of intermingling sand and gravel till aquifers which overly a limestone bedrock aquifer. Agricultural best or beneficial management practices (BMPs) field have been implemented and monitored since 2004. The BMPs were adopted in order to reduce nitrogen losses to the aquifer, and consisted of a reduction in nitrogen fertilizer application rates over a series of agricultural fields located near the well The first study is a one year experiment designed to compare alternative nutrient management practices for corn. Combinations of fertilizer treatments with or without a legume cover crop (red clover) were assessed. The fertilizer treatments studied were: a polymer coated urea (slow-release fertilizer) applied at planting, a conventional urea applied at planting, side-dress treatment of a solution of urea and ammonium nitrate in water containing 28% nitrogen with two different application rates applied in the early summer, and a control. The legume cover crop was incorporated in the soil in the previous fall, and acts as a slow release fertilizer as nitrogen is made available to the following crop as the plants decompose. Treatments were compared based on crop yield, overall economic return, and the potential for nitrate leaching. The potential for nitrate leaching was evaluated with bi-weekly shallow soil core during the growing season, and deep soil cores taken before planting, after harvest and the following spring. The deep cores allowed changes in nitrate storage below the rooting zone to be assessed. The results of this study highlight the importance of timing of fertilizer applications and rate of fertilizer applications. Treatments which provide a delay in the release or application of fertilizer, the polymer-coated urea, the calculator-rate side-dress and the clover cover crop, were found to be advantageous. The polymer-coated urea treatments and side-dress treatments were found to reduce leaching compared to the conventional urea treatment. Treatments with the clover cover crops were not found to reduce crop yields or increase leaching potential, and lower fertilizer costs associated to this practice were found to have a positive economic effect. Plots treated with the high-rate side-dress fertilizer application lost more nitrate to the subsurface compared to the other treatment options, and an economic disadvantage was observed as yields did not compensate for higher fertilizer costs. The study highlights the advantages of the different treatments under study, which may be used to inform policy makers and farmers in the selection of economically and environmentally sustainable nutrient management BMP options. Groundwater monitoring at the site over the years has indentified interesting recharge dynamics, particularly in the vicinity of an ephemeral stream which develops annually during spring and winter melt events in a low lying area of the study site. It was hypothesized that rapid recharge could occur beneath the stream allowing for surface water to quickly reach groundwater, posing a threat to municipal water wells. The current framework of source water protection does not take into account the potential risk posed by this type recharge event. At this field site, rapid infiltration associated with this type of event may pose a risk to drinking water quality due to the proximity of the stream to the pumping wells and the nature of the aquifer. The second study examines rapid groundwater recharge processes beneath the ephemeral stream during the course of a spring melt in 2010. The goals of the study were to quantify recharge at one location beneath the stream and to assess whether temperature variations above the water table can be used as a tracer to reasonably estimate recharge during a short live recharge event. A novel housing for the temperature sensors was designed in order to deploy and position them into gravelly materials within the vadose zone, which reduced the potential for the formation of preferential pathways and permitted the retrieval of the sensors at a later date. Field data were collected during the course of the spring melt period from a network of groundwater monitoring wells and subsurface temperature sensors. Spatial and temporal changes in groundwater geochemistry, hydraulic head and temperature were were used to characterize recharge dynamics at the field site. Recharge beneath a segment of the ephemeral stream was quantified through the numerical analysis of the field data using Hydrus 1-D, a one-dimensional numerical model designed to simulate soil water flow and heat transport in variably saturated porous media. Site specific data were used to create the model domain, provide estimates of physical parameters, and to define initial and time variable boundary conditions. Model parameters were first calibrated by simulating periods where it was expected that soils would be gravity drained with minimal soil water flow, and then further refined by simulating the period when the ephemeral stream was present. A final set of parameters was determined, and the initial gravity drained conditions were re-simulated. The model was able to reproduce field observations under different flow scenarios using the final set of parameters, suggesting that the conceptual model and final model domain representative of the actual field conditions. The successful simulation of the field data sets under the different flow scenarios also increases confidence in the uniqueness of the model results. The model estimated that 0.15 m of recharge occurred beneath the instrumented site during the period between March 9th and March 22nd of 2010 when the ephemeral stream was present. This represents approximately a third of the expected total annual recharge for this location. Regional changes in hydraulic head, groundwater temperature and groundwater chemistry provided additional insight into the dynamic nature of the recharge process during the spring meld period and further illustrated the spatial variability of the aquifers’ response to the stream. The study found that the use of temperature as a tracer provided useful and quantifiable insight into recharge phenomena. The results of this study suggest that high rates of rapid recharge occur beneath the ephemeral stream, and are spatially variable. This type of focused infiltration that occurs during the spring melt may represent a risk to municipal water quality if the infiltrating waters are carrying contaminants.
48

Scaling laws in two models for thermodynamically driven fluid flows / Skalierungsgesetze in zwei Modellen für thermodynamisch getriebene Fluidflüsse

Seis, Christian 03 January 2012 (has links) (PDF)
In this thesis, we consider two models from physics, which are characterized by the interplay of thermodynamical and fluid mechanical phenomena: demixing (spinodal decomposition) and Rayleigh--Bénard convection. In both models, we investigate the dependencies of certain intrinsic quantities on the system parameters. The first model describes a thermodynamically driven demixing process of a binary viscous fluid. During the evolution, the two components of the mixture separate into two domains of the different equilibrium volume fractions. One observes a clear tendency: Larger domains grow at the expense of smaller ones, and thus, the average domain sizes increases --- a phenomenon called coarsening. It turns out that two mechanisms are relevant for the coarsening process. At an early stage of the evolution, material transport is essentially mediated by diffusion; at a later stage, when the typical domain size exceeds a certain value, due to the viscosity of the mixture, a fluid flow sets in and becomes the relevant transport mechanism. In both regimes, the growth rates of the typical domain size obey certain power laws. In this thesis, we rigorously establish one-sided bounds on these growth rates via a priori estimates. The second model, Rayleigh--Bénard convection, describes the behavior of a fluid between two rigid horizontal plates that is heated from below and cooled from above. There are two competing heat transfer mechanisms in the system: On the one hand, thermodynamics favors a state in which temperature variations are locally minimized. Thus, in our model, the thermodynamical equilibrium state is realized by a temperature with a linearly decreasing profile, corresponding to pure conduction. On the other hand, due to differences in the densities of hot and cold fluid parcels, buoyancy forces act on the fluid. This results in an upward motion of hot parcels and a downward motion of cold parcels. We study the dependence of the average upward heat flux, measured in the so-called Nusselt number, on the temperature forcing encoded by the container height. It turns out that the efficiency of the heat transport is independent of the height of the container, and thus, the Nusselt number is a constant function of height. Using a priori estimates, we prove an upper bound on the Nusselt number that displays this dependency --- up to logarithmic errors. Further investigations on the flow pattern in Rayleigh--Bénard convection show a clear separation of length scales: Along the horizontal top and bottom plates one observes thin boundary layers in which heat is essentially conducted, whereas the large bulk is characterized by a convective heat flow. We give first rigorous results in favor of linear temperature profiles in the boundary layers, which indicate that heat is indeed essentially conducted close to the boundaries.
49

Modélisation et caractérisation expérimentale du transport de chaleur en milieu fracturé / Modelling and experimental characterization of thermal transport in fractured media

La Bernardie, Jérôme de 06 December 2017 (has links)
Les milieux cristallins fracturés constituent un potentiel géothermique non négligeable. Il est essentiel d'améliorer son exploitation, pour la géothermie basse et haute énergie, afin de répondre au processus de transition énergétique. Pour cela, la compréhension des mécanismes de transport thermique dans les milieux fracturés est fondamentale. Le transport de chaleur est fortement influencé par l'hétérogénéité hydrodynamique des milieux fracturés et par la géométrie des fractures et des blocs matriciels. A travers des travaux basés sur des développements analytiques et numériques ainsi que des expériences sur site, l'objectif de cette thèse est ainsi de mieux évaluer l'impact de la géométrie des fractures, que ce soit à l'échelle d'un réseau de fractures, ou à l’échelle d’une fracture, sur le transport et le stockage d’énergie thermique dans les milieux cristallins fracturés. Des simulations numériques du transport de chaleur dans un réseau simple de fractures planes et bien connectées ont permis de caractériser l'impact de la géométrie du système de fractures sur le stockage thermique. Deux régimes sont mis en évidence. Tout d'abord, à court terme, la densité de fractures ou de chemins préférentiels, caractérisant la surface d'échange, contrôle l'échange thermique. Puis, à long terme, c'est le volume de roche total entre les fractures qui contrôle le stockage thermique. Ce modèle ne prend toutefois pas en compte la variabilité des ouvertures à l'échelle de la fracture qui est particulièrement présente dans les réseaux de fractures naturels. Des tests de traçage thermique et de soluté ont ainsi été réalisés pour caractériser le transport de chaleur dans un milieu fracturé sur le site de Ploemeur (SNO H+). Pour interpréter les traçages, les expressions analytiques du retard et de l'amplitude du pic de la courbe de restitution thermique ont été développées pour différentes géométries de fractures : fractures planes et chenaux. Ces expressions constituent un outil puissant et novateur pour caractériser la géométrie des fractures lors de tests de traçage thermique mais aussi pour prédire le déplacement du front thermique et la durée de vie des systèmes géothermiques à partir de tests de traçage de soluté. La comparaison de ces expressions avec les résultats expérimentaux permet de mettre en évidence l'importante chenalisation des flux, induisant l'arrivée anticipée du traceur thermique. / Fractured crystalline media has a significant geothermal potential. Its exploitation, for low and high enthalpy geothermal power generation, could be enhanced to satisfy the energy transition process. For this, understanding thermal transport processes in fractured media is fundamental. Heat transport is strongly influenced by hydrodynamics heterogeneity of fractured media and by fracture and matrix block geometry. Through analytical and numerical modelling and field site experiments, the aim of this thesis is thus to better assess the impact of fracture geometry on thermal transport and storage in fractured crystalline rock, at fracture and fracture network scale. Numerical simulations of heat transport in a simple network of well connected plane fractures allowed us to characterize the impact of the fracture system geometry on thermal storage. Two regimes are highlighted. First, at short term, the density of fractures, or preferential paths, controls heat exchanges. Then at long term, the total rock volume between the fractures controls thermal storage. This model does not take into account the aperture variability at fracture scale, which is particularly present in natural fracture networks. Thus, thermal and solute tracer tests have been achieved to characterize heat transport in a fractured media at Ploemeur field site (SNO H +). To interpret the tracer tests, analytical expressions of thermal breakthrough peak retardation and amplitude have been developed for different fracture geometries : parallel plate fractures and channels. Those expressions are a powerful and innovative tool to characterize fracture geometries from thermal tracer tests, and also to predict thermal front transit time and lifetime of geothermal systems from solute tracer tests. Confrontation of those expressions to experimental results shows that observed differences between thermal and solute breakthrough can be explained only by channeling flow inducing low thermal transit times.
50

Performance Features of a Stationary Stochastic Novikov Engine

Schwalbe, Karsten, Hoffmann, Karl Heinz 22 January 2018 (has links) (PDF)
In this article a Novikov engine with fluctuating hot heat bath temperature is presented. Based on this model, the performance measure maximum expected power as well as the corresponding efficiency and entropy production rate is investigated for four different stationary distributions: continuous uniform, normal, triangle, quadratic, and Pareto. It is found that the performance measures increase monotonously with increasing expectation value and increasing standard deviation of the distributions. Additionally, we show that the distribution has only little influence on the performance measures for small standard deviations. For larger values of the standard deviation, the performance measures in the case of the Pareto distribution are significantly different compared to the other distributions. These observations are explained by a comparison of the Taylor expansions in terms of the distributions’ standard deviations. For the considered symmetric distributions, an extension of the well known Curzon–Ahlborn efficiency to a stochastic Novikov engine is given.

Page generated in 0.0953 seconds