• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 71
  • 22
  • 14
  • 10
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 328
  • 328
  • 129
  • 108
  • 86
  • 53
  • 53
  • 50
  • 50
  • 48
  • 47
  • 43
  • 42
  • 38
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles

Royo Pascual, Lucía 29 June 2017 (has links)
Regulations for ICE-based transportation in the EU seek carbon dioxide emissions lower than 95 g CO2/km by 2020. In order to fulfill these limits, improvements in vehicle fuel consumption have to be achieved. One of the main losses of ICEs happens in the exhaust line. Internal combustion engines transform chemical energy into mechanical energy through combustion; however, only about 15-32% of this energy is effectively used to produce work, while most of the fuel energy is wasted through exhaust gases and coolant. Therefore, these sources can be exploited to improve the overall efficiency of the engine. Between these sources, exhaust gases show the largest potential of Waste Heat Recovery (WHR) due to its high level of exergy. Regarding WHR technologies, Rankine cycles are considered as the most promising candidates for improving Internal Combustion Engines. However, the implementation of this technology in modern passenger cars requires additional features to achieve a compact integration and controllability in the engine. While industrial applications typically operates in steady state operating points, there is a huge challenge taking into account its impact in the engine during typical daily driving profiles. This thesis contributes to the knowledge and characterization of an Organic Rankine Cycle coupled with an Internal Combustion Engine using ethanol as working fluid and a swash-plate expander as expansion machine. The main objective of this research work is to obtain and quantify the potential of Organic Rankine Cycles for the use of residual energy in automotive engines. To do this, an experimental ORC test bench was designed and built at CMT (Polytechnic University of Valencia), which can be coupled to different types of automotive combustion engines. Using these results, an estimation of the main variables of the cycle was obtained both in stationary and transient operating points. A potential of increasing ICE mechanical efficiency up to 3.7% could be reached at points of high load installing an ORC in a conventional turbocharged gasoline engine. Regarding transient conditions, a slightly simple and robust control based on adaptive PIDs, allows the control of the ORC in realistic driving profiles. High loads and hot conditions should be the starting ideal conditions to test and validate the control of the ORC in order to achieve high exhaust temperatures that justify the feasibility of the system. In order to deepen in the viability and characteristics of this particular application, some theoretical studies were done. A 1D model was developed using LMS Imagine.Lab Amesim platform. A potential improvement of 2.5% in fuel conversion efficiency was obtained at the high operating points as a direct consequence of the 23.5 g/kWh reduction in bsfc. To conclude, a thermo-economic study was developed taking into account the main elements of the installation costs and a minimum Specific Investment Cost value of 2030 €/kW was obtained. Moreover, an exergetic study showed that a total amount of 3.75 kW, 36.5% of exergy destruction rate, could be lowered in the forthcoming years, taking account the maximum efficiencies considering technical restrictions of the cycle components. / Las normativas anticontaminantes para el transporte propulsado por motores de combustión interna alternativos en la Unión Europea muestran límites de emisión menores a 95 g CO2/km para el año 2020. Con el fin de cumplir estos límites, deberán ser realizadas mejoras en el consumo de combustible en los vehículos. Una de las principales pérdidas en los Motores de Combustión Interna Alternativos (MCIA) ocurre en la línea de escape. Los MCIA transforman la energía química en energía mecánica a través de la combustión; sin embargo, únicamente el 15-32% de esta energía es eficazmente usada para producir trabajo, mientras que la mayor parte es desperdiciada a través de los gases de escape y el agua de refrigeración del motor. Por ello, estas fuentes de energía pueden ser utilizadas para mejorar la eficiencia global del vehículo. De estas fuentes, los gases de escape muestran un potencial mayor de recuperación de energía residual debido a su mayor contenido exergético. De todos los tipos de Sistemas de Recuperación de Energía Residual, los Ciclos Rankine son considerados como los candidatos más prometedores para mejorar la eficiencia de los MCIA. Sin embargo, la implementación de esta tecnología en los vehículos de pasajeros modernos requiere nuevas características para conseguir una integración compacta y una buena controlabilidad del motor. Mientras que las aplicaciones industriales normalmente operan en puntos de operación estacionarios, en el caso de los vehículos con MCIA existen importantes retos teniendo en cuenta su impacto en el modo de conducción cotidianos. Esta Tesis contribuye al conocimiento y caracterización de un Ciclo Rankine Orgánico acoplado con un Motor de Combustión Interna Alternativo utilizando etanol como fluido de trabajo y un expansor tipo Swash-plate como máquina expansora. El principal objetivo de este trabajo de investigación es obtener y cuantificar el potencial de los Ciclos Rankine Orgánicos (ORC) para la recuperación de la energía residual en motores de automoción. Para ello, una instalación experimental con un Ciclo Rankine Orgánico fue diseñada y construida en el Instituto Universitario "CMT - Motores Térmicos" (Universidad Politécnica de Valencia), que puede ser acoplada a diferentes tipos de motores de combustión interna alternativos. Usando esta instalación, una estimación de las principales variables del ciclo fue obtenida tanto en puntos estacionarios como en transitorios. Un potencial de mejora en torno a un 3.7 % puede ser alcanzada en puntos de alta carga instalando un ORC en un motor gasolina turboalimentado. Respecto a las condiciones transitorias, un control sencillo y robusto basado en PIDs adaptativos permite el control del ORC en perfiles de conducción reales. Las condiciones ideales para testear y validar el control del ORC son alta carga en el motor comenzando con el motor en caliente para conseguir altas temperaturas en el escape que justifiquen la viabilidad de estos ciclos. Para tratar de profundizar en la viabilidad y características de esta aplicación particular, diversos estudios teóricos fueron realizados. Un modelo 1D fue desarrollado usando el software LMS Imagine.Lab Amesim. Un potencial de mejora en torno a un 2.5% en el rendimiento efectivo del motor fue obtenido en condiciones transitorias en los puntos de alta carga como una consecuencia directa de la reducción de 23.5 g/kWh del consumo específico. Para concluir, un estudio termo-económico fue desarrollado teniendo en cuenta los costes de los principales elementos de la instalación y un valor mínimo de 2030 €/kW fue obtenido en el parámetro de Coste Específico de inversión. Además, el estudio exergético muestra que un total de 3.75 kW, 36.5 % de la tasa de destrucción total de exergía, podría ser reducida en los años futuros, teniendo en cuenta las máximas eficiencias considerando restricciones técnicas en los componentes del ciclo. / Les normatives anticontaminants per al transport propulsat per motors de combustió interna alternatius a la Unió Europea mostren límits d'emissió menors a 95 g·CO2/km per a l'any 2020. Per tal d'acomplir aquests límits, s'hauran de realitzar millores al consum de combustible dels vehicles. Una de les principals pèrdues als Motors de combustió interna alternatius (MCIA) ocorre a la línia d'escapament. Els MCIA transformen l'energia química en energia mecànica a través de la combustió; però, únicament el 15-32% d'aquesta energia és usada per produir treball, mentre que la major part és desaprofitada a través dels gasos d'escapament i l'aigua de refrigeració del motor. Per això, aquestes fonts d'energia poden ser utilitzades per millorar l'eficiència global del vehicle. Considerant aquestes dues fonts d'energia, els gasos d'escapament mostren un potencial major de recuperació d'energia residual debut al seu major contingut exergètic. De tots els tipus de Sistemes de Recuperació d'Energia Residual, els Cicles Rankine són considerats com els candidats més prometedors per millorar l'eficiència dels MCIA. No obstant, la implementació d'aquesta tecnologia en els vehicles de passatgers moderns requereix un desenvolupament addicional per aconseguir una integració compacta i una bona controlabilitat del motor. Mentre que les aplicacions industrials normalment operen en punts d'operació estacionaris, en el cas dels vehicles amb MCIA hi han importants reptes a solucionar tenint en compte el funcionament en condicions variables del motor i el seu impacte en la manera de conducció quotidiana del usuari. Aquesta Tesi contribueix al coneixement i caracterització d'un Cicle Rankine Orgànic (ORC) acoblat amb un motor de combustió interna alternatiu (MCIA) utilitzant etanol com a fluid de treball i un expansor tipus Swash-plate com a màquina expansora. El principal objectiu d'aquest treball de recerca és obtenir i quantificar el potencial dels ORCs per a la recuperació de l'energia residual en motors d'automoció. Per aconseguir-ho, una instal·lació experimental amb un ORC va ser dissenyada i construïda a l'Institut "CMT- Motores Térmicos" (Universitat Politècnica de València). Esta installació pot ser acoblada a diferents tipus de MCIAs. Mitjançant assajos experimentals en aquesta installació, una estimació de les principals variables del cicle va ser obtinguda tant en punts estacionaris com en punts transitoris. Un potencial de millora al voltant d'un 3.7% pot ser aconseguida en punts d'alta càrrega instal·lant un ORC acoblat a un motor gasolina turboalimentat. Pel que fa a les condicions transitòries, un control senzill i robust basat en PIDs adaptatius permet el control del ORC en perfils de conducció reals. Les condicions ideals per a testejar i validar el control de l'ORC són alta càrrega al motor començant amb el motor en calent per aconseguir altes temperatures d'escapament que justifiquen la viabilitat d'aquests cicles. Per tractar d'aprofundir en la viabilitat i característiques d'aquesta aplicació particular, diversos estudis teòrics van ser realitzats. Un model 1D va ser desenvolupat usant el programari LMS Imagine.Lab Amesim. Un potencial de millora al voltant d'un 2.5% en el rendiment efectiu del motor va ser obtingut en condicions transitòries en els punts d'alta càrrega com una conseqüència directa de la reducció de 23.5 g/kWh al consum específic. Per concloure, un estudi termo-econòmic va ser desenvolupat tenint en compte els costos dels principals elements de la installació i un valor mínim de 2030 €/kW va ser obtingut en el paràmetre del Cost Específic d'Inversió. A més, l'estudi exergètic mostra que un total de 3.75 kW, 36.5% de la taxa de destrucció total d'exergia, podria ser recuperat en un pròxim, considerant restriccions tècniques en els components del cicle i tenint en compte les màximes eficiències que es poden aconseguir. / Royo Pascual, L. (2017). Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84013
142

EXPERIMENTAL ANALYSIS OF THERMAL MANAGEMENT INFLUENCE ON PERFORMANCE AND EMISSIONS IN DIESEL ENGINES AT LOW AMBIENT TEMPERATURE

Moratal Martínez, Ausiás Alberto 05 November 2018 (has links)
La regulación mundial de emisiones contaminantes en el sector de la automoción está siendo cada día más estricta. La implantación de nuevos procedimientos está presionando la industria hacia la búsqueda de nuevas tecnologías que cumplan los objetivos de reducción de emisiones contaminantes. En el medio plazo se espera que las pruebas de emisiones a baja temperatura ambiente sean obligatorias en el proceso de homologación. La combustión a bajas temperaturas influye de forma importante en la velocidad de la reacción conllevando un aumento de las emisiones y finalmente al apagado de llama. Bajo estas condiciones, se produce un aumento de las emisiones de hidrocarburos (HC) y monóxido de carbono (CO) así como un aumento del consumo de combustible. Además, en condiciones de baja temperatura ambiente las emisiones de óxidos de nitrógeno (NOx) pueden aumentar debido a la desactivación de los sistemas de recirculación de gases de escape. En la presente tesis, se ha analizado el efecto de la baja temperatura ambiente en un motor diesel HSDI. Los ensayos fueron realizados en ciclos de conducción NEDC y WLTC. La influencia directa de las bajas temperaturas en las emisiones se analizó por medio de las medida bruta de contaminantes, aguas arriba de los sistemas de postratamiento. El funcionamiento de los sistemas de postratamiento también fue evaluado a bajas temperaturas mediante la eficiencia de la oxidación catalítica de HC y CO. Los resultados de este estudio mostraron un deterioro de las emisiones y del rendimiento efectivo a bajas temperaturas. El efecto de las bajas temperaturas varió dependiendo de condiciones de carga. El ciclo NEDC se consolida como el peor escenario de conducción, para la realización de pruebas a baja temperatura, con un incremento del 270% en HC, 250% en NOx, 125% en CO y 20% en consumo específico. El mayor grado de carga junto con el carácter más transitorio del ciclo WLTC mostraron un efecto menor de las bajas temperaturas ambiente con un aumento del 150% en HC y 250% en NOx. A diferencia del ciclo NEDC, las emisiones de CO se redujeron en un 20% y no se detectó un aumento del consumo de combustible. Además del aumento de la formación de contaminates, el análisis del catalizador de oxidación mostró una reducción de la eficiencia en ambos ciclos de conducción NEDC y WLTC. El presente trabajo tiene por objetivo comparar dos sistemas de gestión térmica para la mejora del funcionamiento de MCIA a bajas temperaturas. El primer sistema estaba basado en la gestión del flujo de refrigerante para evitar subenfriamiento en condiciones de funcionamiento en frío. Por un lado, se propusieron estrategias de bajo y nulo flujo en el circuito de refrigerante motor. Por otro lado, se realizaron ensayos con 0 flujo en el circuito de refrigerante del WCAC para evitar el subenfriamiento del aire de admisión durante puntos de baja carga en condiciones de funcionamiento en frío. El otro sistema incluía la recuperación de energía térmica del escape (EGHR). El refrigerante del WCAC se empleó como fluido de recuperación conectándose con un intercambiador de escape. La primera parte de los resultados de la gestión térmica están centrados en el análisis individual de los distintos sistemas de gestión. En las conclusiones se comparan todos los sistemas propuestas explicando las diferencias entre ellos. Mediante el uso del EGHR las emisiones de HC fueron reducidas, durante los puntos de baja carga, en comparación con el resto de estrategias térmicas planteadas. El análisis energético del EGHR se centró en la eficiencia y en el estudio la recuperación por cambio de fase. El papel que la entalpia de cambio de fase juega en la recuperación de calor residual fue estudiado por medio de la medición de concentración de vapor de agua en el gas de escape en la entrada y salida del intercambiador del EGHR. La condensación del vapor de agua de escape representó el 25% de toda la / Automotive world-wide pollutant emissions regulations are getting more stringent every day. New testing procedures are pushing the automotive industry towards researching new technologies to accomplish the emissions targets. In the mid-term future is expected that low ambient temperature emissions testing will become mandatory for any engine model type approval. Low ignition temperature greatly influences on combustion rate leading to emissions increase and eventually to misfiring events. In these conditions, high emissions of unburned hydrocarbon (HC) and carbon monoxide (CO) are released along with fuel consumption penalties. In addition, nitrogen oxides (NOx) emissions may rise under cold conditions owing to the disabling of Exhaust Gas Recirculation (EGR) systems at cold conditions. In this thesis the effect of low ambient temperature in a High Speed Direct Injection (HSDI) Light Duty (LD) engine is analysed. Tests were performed in New European Driving Cycles (NEDC) and Worldwide harmonized Light vehicles Tests (WLTC). Direct influence of low temperature on engine emissions was addressed by engine out pollutants sampling. The effect on aftertreatment systems was also evaluated by the CO and HC oxidation efficiency. The results of this survey indicated a general detriment of pollutant emissions and brake thermal efficiency at low ambient temperatures. The effect of low temperature varied depending on the engine load test conditions. NEDC comes up as the worst scenario for low temperature testing with an increase of 270% in HC, 250% in NOx, 125% in CO and 20% in Brake Specific Fuel Consumption (BSFC). Running at higher engine loads and transient conditions, as it's performed in WLTC tests, showed a lower effect of ambient temperature with an increase of 150% in HC and 250% in NOx. In contrast to NEDC, CO emissions were reduced in 20% and no engine efficiency penalty was spotted. In addition to the pollutant emission formation increase, the aftertreatment analysis showed a significant reduction of the Diesel Oxidative Catalyst (DOC) efficiency in both NEDC and WLTC. This work is aimed to analyse and compare two different thermal management approaches for engine enhancement running at low ambient temperature. The first approach relied on coolant management aimed to avoid overcooling when running at cold conditions. On one hand, low flow and 0 flow engine coolant strategies were performed while Water Charge Air Cooled (WCAC) coolant is recirculated. On the other hand, WCAC 0 flow was applied for avoiding overcooling at low ambient temperatures. The other layout was based on an exhaust gas heat recovery system (EGHR). WCAC coolant was directed to an exhaust tail pipe heat exchanger for waste heat recovery. Recovered heat was released in the WCAC for speeding up the intake air temperature increase. The first part of the thermal management results is focused on the analysis by thermal layout. Comparison of both thermal management is discussed in the conclusions section of that chapter. By enabling an EGHR system, HC emissions were reduced during low load driving phases in comparison with the other of layouts. EGHR energy analysis was also conducted, focusing on energy efficiency and phase change recovery analysis. The role that latent enthalpy plays on waste heat recovery was addressed by measuring the water vapour concentration in the exhaust stream at both EGHR heat exchanger inlet and outlet. Water vapour condensation represented the 25% of the total recovered energy. / La regulació mundial d'emissions contaminants en el sector de l'automoció està sent cada vegada més estricta. La implantació de nous procediments està pressionant la indústria cap a la cerca de noves tecnologies que complisquen els objectius de reducció d'emissions contaminants. En el mig termini s'espera que les proves d'emissions a baixa temperatura ambient siguen obligatòries en el procés d'homologació. La combustió a baixes temperatures influeix de forma important en la velocitat de la reacció comportant un augment de les emissions i finalment a l'apagat de flama. Sota aquestes condicions, es produeix un augment de les emissions d'hidrocarburs (HC) i monòxid de carboni (CO) així com un augment del consum de combustible. A més, en condicions de baixa temperatura ambiente les emissions d'òxids de nitrogen (NOx) poden augmentar a causa de la desactivació dels sistemes de recirculació de gasos d'escapament. En la present tesi, s'ha analitzat l'efecte de la baixa temperatura ambiente en un motor dièsel HSDI. Els assajos van ser realitzats en cicles de conducció NEDC i WLTC. La influència directa de les baixes temperatures en les emissions es va analitzar per mitjà de la mesura bruta de contaminants, aigües a dalt dels sistemes de postractament. El funcionament dels sistemes de postractament també va ser avaluat a baixes temperatures mitjançant l'eficiència de la oxidació catalítica de HC i CO. Els resultats d'aquest estudi van mostrar una deterioració de les emissions i del rendiment efectiu a baixes temperatures. L'efecte de les baixes temperatures variava depenent de les condicions de càrrega. El cicle NEDC es consolida com el pitjor escenari de conducció, per a la realització de proves a baixa temperatura, amb un increment del 270% en HC, 250% en NOx, 125% en CO i 20% en consum específic. El major grau de càrrega juntament amb el caràcter més transitori del cicle WLTC van mostrar un efecte menor de les baixes temperatures ambient amb un augment del 150% en HC i 250% en NOx. A diferència del cicle NEDC, les emissions de CO es van reduir en un 20% i no es va detectar un augment del consum de combustible. A més de l'augment de la formació de contaminants, l'anàlisi del catalitzador d' oxidació va mostrar una reducció de l'eficiència en tots dos cicles de conducció NEDC i WLTC. El present treball té per objectiu comparar dos sistemes de gestió tèrmica per a la millora del funcionament dels MCIA a baixes temperatures. El primer sistema estava basat en la gestió del flux de refrigerant per a evitar subrefredament en condicions de funcionament en fred. D'una banda, es van proposar estratègies de baix i nul flux en el circuit de refrigerant motor. D'altra banda, es van realitzar assajos amb 0 flux en el circuit de refrigerant del WCAC per a evitar el subrefredament de l'aire d'admissió durant punts de baixa càrrega en condicions de funcionament en fred. L'altre sistema incloïa la recuperació d'energia tèrmica de l'escapament (EGHR). El refrigerant del WCAC es va emprar com fluït de recuperació connectant-se amb un bescanviador d'escapament. La primera part dels resultats de la gestió tèrmica estan centrats en l'anàlisi individual dels diferents sistemes de gestió. En les conclusions es comparen tots els sistemes proposats explicant les diferències entre ells. Mitjançant l'ús del EGHR les emissions de HC van ser reduïdes, durant els punts de baixa càrrega, en comparació de la resta d'estratègies tèrmiques plantejades. L'anàlisi energètic del EGHR es va centrar en l'eficiència i en l'estudi de la recuperació per canvi de fase. El paper que l'entalpia de canvi de fase juga en la recuperació de calor residual va ser estudiat per mitjà del mesurament de concentració de vapor d'aigua en el gas d'escapament en l'entrada i eixida del bescanviador del EGHR. La condensació del vapor d'aigua de l'escapament va representar el 25% de tota l'energia recuperada. / Moratal Martínez, AA. (2018). EXPERIMENTAL ANALYSIS OF THERMAL MANAGEMENT INFLUENCE ON PERFORMANCE AND EMISSIONS IN DIESEL ENGINES AT LOW AMBIENT TEMPERATURE [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111950
143

A newly designed economizer to improve waste heat recovery: A case study in a pasteurized milk plant

Niamsuwan, S., Kittisupakorn, P., Mujtaba, Iqbal January 2013 (has links)
no / An economizer is normally employed to perform heat recovery from hot exhaust gases to cold fluid. In this work, a newly designed economizer is devised to achieve high heat recovery in a pasteurized milk plant. In the economizer, the hot exhaust gas is divided into two channels flowing up on the left and right sides. After that, it is moving down passing over aligned banks of tubes, which water is flowing inside, in a triple passes fashion. Moreover, three dimensional (3D) models with heat transfer including fluid dynamic have been developed, validated by actual plant data and used to evaluate the performance of the economizer. Simulation results indicate that the newly designed economizer can recover the heat loss of 38% and can achieve the cost saving of 13%.
144

Numerical and Experimental Design of High Performance Heat Exchanger System for A Thermoelectric Power Generator for Implementation in Automobile Exhaust Gas Waste Heat Recovery

Pandit, Jaideep 07 May 2014 (has links)
The effects of greenhouse gases have seen a significant rise in recent years due to the use of fossil fuels like gasoline and diesel. Conversion of the energy stored in these fossil fuels to mechanical work is an extremely inefficient process which results in a high amount of energy rejected in the form of waste heat. Thermoelectric materials are able to harness this waste heat energy and convert it to electrical power. Thermoelectric devices work on the principle of the Seebeck effect, which states that if two junctions of dissimilar materials are at different temperatures, an electrical potential is developed across them. Even though these devices have small efficiencies, they are still an extremely effective way of converting low grade waste heat to usable electrical power. These devices have the added advantage of having no moving parts (solid state) which contributes to a long life of the device without needing much maintenance. The performance of thermoelectric generators is dependent on a non-dimensional figure of merit, ZT. Extensive research, both past and ongoing, is focused on improving the thermoelectric generator's (TEG's) performance by improving this figure of merit, ZT, by way of controlling the material properties. This research is usually incremental and the high performance materials developed can be cost prohibitive. The focus of this study has been to improve the performance of thermoelectric generator by way of improving the heat transfer from the exhaust gases to the TEG and also the heat transfer from TEG to the coolant. Apart from the figure of merit ZT, the performance of the TEG is also a function of the temperature difference across it, By improving the heat transfer between the TEG and the working fluid, a higher temperature gradient can be achieved across it, resulting in higher heat flux and improved efficiency from the system. This area has been largely neglected as a source of improvement in past research and has immense potential to be a low cost performance enhancer in such systems. Improvements made through this avenue, also have the advantage of being applicable regardless of the material in the system. Thus these high performance heat exchangers can be coupled with high performance materials to supplement the gains made by improved figure of merits. The heat exchanger designs developed and studied in this work have taken into account several considerations, like pressure drop, varying engine speeds, location of the system along the fuel path, system stability etc. A comprehensive treatment is presented here which includes 3D conjugate heat transfer modeling with RANS based turbulence models on such a system. Various heat transfer enhancement features are implemented in the system and studied numerically as well as experimentally. The entire system is also studied experimentally in a scaled down setup which provided data for validation of numerical studies. With the help of measured and calculated data like temperature, ZT etc, predictions are also presented about key metrics of system performance. / Ph. D.
145

Effects of coolant flow rate, groundwater table fluctuations and infiltration of rainwater on the efficiency of heat recovery from near surface soil layers

Mohamed, Mostafa H.A., El Kezza, O., Abdel-Aal, Mohamad, Schellart, A., Tait, Simon J. 19 June 2014 (has links)
No / This paper aims to investigate experimentally the effects of circulating coolant flow rate, groundwater table fluctuations, infiltration of rainwater, on the amount of thermal energy that can be recovered from the near surface soil layers. A comprehensive experimental investigation was carried out on a fully equipped tank filled with sand. A heat collector panel was embedded horizontally at the mid-height of the tank. Measurements of the temperature at various points on the heat collector panel, adjacent soil, inlet and outlet were continuously monitored and recorded. After reaching a steady state, it was observed that increasing water saturation in the adjacent soil leads to a substantial increase on the amount of heat recovered. A model was proposed for the estimation of temperature along the heat collector panel based on steady state conditions. It accounted for thermal resistance between pipes and the variability of water saturation in the adjacent soils. This model showed good agreement with the data. Whilst increasing the flow rate of the circulating fluid within the panel did not cause noticeable improvement on the amount of heat energy that can be harnessed within the laminar flow regime commonly found in ground source heat panels. Infiltration of rainwater would cause a temporary enhancement on the amount of extracted heat. Measurement of the sand thermal conductivity during a cycle of drying and wetting indicates that the thermal conductivity is primarily dependent upon the degree of water saturation and secondary on the flow path.
146

Economic Performance Assessment of Three Renovated Multi-Family Houses with Different HVAC Systems

Khadra, Alaa January 2018 (has links)
Since the building sector is responsible for 40% of the energy consumption and 36% of CO2 emissions in the EU, the reduction of energy use has become a priority in this sector. The EU has adopted several policies to improve energy efficiency. One of these policies aims to achieve energy efficient renovations in at least 3% of buildings owned and occupied by governments annually. In Sweden, a large part of existing buildings was built between 1965 and 1974, a period commonly referred to as ‘miljonprogrammet’. Stora Tunabyggen AB, the public housing company in Borlänge municipality, begun a renovation project in the Tjärna Ängar neighborhood within the municipality with the greatest share of its buildings stock from this period. The pilot project started in 2015. The aim of this project was to renovate three buildings with similar measures, that is, by adding 150 mm attic insulation, replacing windows with higher performing ones (U-value 1 W/m ²K), by adding 50 mm of insulation to the infill walls and by the installation of flowreducing taps. The essential difference between the three renovation packages is the HVAC systems. The selected HVAC systems are (1) exhaust air heat pump, (2) mechanical ventilation with heat recovery and (3) exhaust ventilation. Life cycle cost analysis was conducted for the three building and sensitivity analysis for different values of discount rate and energy price escalation was performed. The study found that the house with exhaust ventilation has the lowest life cycle cost and the highest energy cost. The house with exhaust air heat pump has 3% higher life cycle cost and 18% lower energy use at 3% discount rate and 3% energy price escalation. The study found that mechanical ventilation with heat recovery is not profitable, although it saves energy. The sensitivity analysis has shown that the possible increment of price energy and lower discount rate give higher value for the future costs in life cycle cost analysis. This lead to the main finding of this thesis, which is that exhaust air heat pump is the best choice for the owner according to the available data and the assessed parameters.
147

Výměníky tepla / Heat exchangers

Kuráňová, Helena January 2019 (has links)
The master thesis deals with the issue of heat recovery and efficiency of exchangers. The experimental part is dedicated to the measurment of efficiency of a plastic model of heat exchanger with atypical construction compared to a standard plate heat exchanger. For production of the heat exchangers 3D printer was used so the thesis uses the possibilities that 3D printing is offering nowadays.
148

Experimental evaluation of a low temperature and low pressure turbine

Ssebabi, Brian 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The potential benefits from saving energy have driven most industrial processing facilities to pay more attention to reducing energy wastage. Because the industrial sector is the largest user of electricity in South Africa (37.7% of the generated electricity capacity), the application of waste heat recovery and utilisation (WHR&U) systems in this sector could lead to significant energy savings, a reduction in production costs and an increase in the efficiency of industrial processes. Turbines are critical components of WHR&U systems, and the choice of an efficient and low cost turbine is crucial for their successful implementation. The aim of this thesis project is therefore to validate the use of a turbine for application in a low grade energy WHR&U system. An experimental turbine kit (Infinity Turbine ITmini) was acquired, assembled and tested in a specially designed and built air test bench. The test data was used to characterise the turbine for low temperature (less than 120 Celsius) and pressure (less than 10 bar) conditions. A radial inflow turbine rotor was designed, manufactured and then tested with the same test bench, and its performance characteristics determined. In comparison with the ITmini rotor, the as-designed and manufactured rotor achieved a marginally better performance for the same test pressure ratio range. The as-designed turbine rotor performance characteristics for air were then used to scale the turbine for a refrigerant-123 application. Future work should entail integrating the turbine with a WHR&U system, and experimentally determining the system’s performance characteristics. / AFRIKAANSE OPSOMMING: Die potensiële voordele wat gepaard gaan met energiebesparing het die fokus van industrie laat val op die bekamping van energievermorsing. Die industriële sektor is die grootse verbruiker van elektrisiteit in Suid-Afrika (37.7% van die totale gegenereerde kapasiteit). Energiebesparing in die sektor deur die toepassing van afval-energie-herwinning en benutting (AEH&B) sisteme kan lei tot drastiese vermindering van energievermorsing, ‘n afname in produksie koste en ‘n toename in die doeltreffendheid van industriële prosesse. Turbines is kritiese komponente in AEH&B sisteme en die keuse van ‘n doeltreffende lae koste turbine is noodsaaklik in die suksesvolle implementering van dié sisteme. Die doelwit van hierdie tesisprojek is dus om die toepassing van ‘n turbine in ‘n lae graad energie AEH&B sisteem op die proef te stel. ‘n Eksperimentele turbine stel (“Infinity Turbine ITmini”) is aangeskaf, aanmekaargesit en getoets op ‘n pasgemaakte lugtoetsbank. Die toetsdata is gebruik om die turbine te karakteriseer by lae temperatuur (minder as 120 Celsius) en druk (minder as 10 bar) kondisies. ‘n Radiaalinvloeiturbinerotor is ook ontwerp, vervaardig en getoets op die lugtoetsbank om die rotor se karakteristieke te bepaal. In vergelyking met die ITmini-rotor het die radiaalinvloeiturbinerotor effens beter werkverrigting gelewer by diselfde toetsdruk verhoudings. Die werksverrigtingkarakteristieke met lug as vloeimedium van die radiaalinvloeiturbinerotor is gebruik om die rotor te skaleer vir ‘n R123 verkoelmiddel toepassing. Toekomstige werk sluit in om die turbine met ‘n AEH&B sisteem te integreer en die sisteem se werksverrigtingkarakteristieke te bepaal.
149

Kravspecificering av avgaspannor / Specification of requirements for waste heat recovery units

Paulin, Peter January 2009 (has links)
<p><p>This report describes the work of developing a specification of requirements for Waste Heat Recovery Units. The main part of the paper describes how the work with the specification of requirements has been performed. One specific question to be answered is:</p><p>What are the customer’s demands in case of properties for the Waste Heat Recovery Units and how is that information collected as an order documentation to suit the business area Oil & Gas?</p><p>The report begins with a description of the assignment and continues with the aim and background. A theoretical part describes the different areas and methods that have been important during the process. Work on the specification has been carried out on site at the company where interviews of staff and the study of internal documents has been a significant part of the implementation.</p><p>The result is delivered to the company in the form of a specification of requirements for the Waste Heat Recovery Unit. This specification fulfills the requirements set initially and is a good starting point for the company to proceed with in contact with subcontractors. The conclusion of the work is that the establishment of a good specification of requirements is really important and that has been obvious during the work and progress of this project. The difficulty lied in getting the right information and to keep it simple and at same time durable.</p></p>
150

Thermal energy recovery of low grade waste heat in hydrogenation process / Återvinning av lågvärdig spillvärme från en hydreringsprocess

Hedström, Sofia January 2014 (has links)
The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which contributes to the increase of the production costs and also impacts the environment. The simulation programs used in industrial engineering enable development and optimization of the operational processes in a cost-effective way. The company Chematur Engineering AB, which supplies chemical plants in many different fields of use on a worldwide basis, was interested in the investigation of the possibilities for effective waste heat recovery from the hydrogenation of dinitrotoluene, which is a sub-process in the toluene diisocyanate manufacture plant. The project objective was to implement waste heat recovery by application of the Organic Rankine Cycle and the Absorption Refrigeration Cycle technologies. Modeling and design of the Organic Rankine Cycle and the Absorption Refrigeration Cycle systems was performed by using Aspen Plus® simulation software where the waste heat carrier was represented by hot water, coming from the internal cooling system in the hydrogenation process. Among the working fluids investigated were ammonia, butane, isobutane, propane, R-123, R-134a, R-227ea, R-245fa, and ammonia-water and LiBr-water working pairs. The simulations have been performed for different plant capacities with different temperatures of the hydrogenation process. The results show that the application of the Organic Rankine Cycle technology is the most feasible solution where the use of ammonia, R-123, R-245fa and butane as the working fluids is beneficial with regards to power production and pay-off time, while R-245fa and butane are the most sustainable choices considering the environment.

Page generated in 0.0551 seconds