Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
561 |
LOW-ORDER DISCRETE DYNAMICAL SYSTEM FOR H<sub>2</sub>-AIR FINITE-RATE COMBUSTION PROCESSZeng, Wenwei 01 January 2015 (has links)
A low-order discrete dynamical system (DDS) for finite-rate chemistry of H2-air combustion is derived in 3D. Fourier series with a single wavevector are employed to represent dependent variables of subgrid-scale (SGS) behaviors for applications to large-eddy simulation (LES). A Galerkin approximation is applied to the governing equations for comprising the DDS. Regime maps are employed to aid qualitative determination of useful values for bifurcation parameters of the DDS. Both isotropic and anisotropic assumptions are employed when constructing regime maps and studying bifurcation parameters sequences. For H2-air reactions, two reduced chemical mechanisms are studied via the DDS. As input to the DDS, physical quantities from experimental turbulent flow are used. Numerical solutions consisting of time series of velocities, species mass fractions, temperature, and the sum of mass fractions are analyzed. Numerical solutions are compared with experimental data at selected spatial locations within the experimental flame to check whether this model is suitable for an entire flame field. The comparisons show the DDS can mimic turbulent combustion behaviors in a qualitative sense, and the time-averaged computed results of some species are quantitatively close to experimental data.
|
562 |
HEAT TRANSFER IN A FIXED BED AND MASS TRANSFER IN A COUNTER-CURRENT MOVING BEDDellaretti Filho, Osmario, 1944- January 1981 (has links)
The behavior of gas-solid reactors known as compact-fixed and moving beds, is analyzed from a theoretical viewpoint. For a compact fixed-bed the solution of the energy balance equations is obtained for the cases of a uniform temperature inside the solid pellets (i.e., the Biot number is zero) and for the case in which there are temperature gradients within the pellets (Bi > 0). For short contact times, beds with Bi > 0 have gas- and solid- temperatures which are greater than the temperatures within beds with Bi = 0. For long times, the situation is reversed. For a compact-moving bed the solution of the mass balance equations is obtained for the cases of a feed-solid with constant concentration and a feed solid with an oscillating concentration. In both cases the steady states obtained are unique, and internal recycling is observed only for a feed-solid with an oscillating concentration. Recycling is that situation when the concentration of the solid falls below that of the gas for a bed in which the feed-solid is greater than the feed-gas. This occurred when the period of oscillation was smaller than the residence time of the solid provided that the residence time of the solid was not very short (i.e., provided that B(,s) > 0.1). For both types of beds there is an equivalence between mass transfer and energy transfer so that the solutions can be interchanged with suitable definitions of dimensionless variables.
|
563 |
Analytical and experimental investigation of capillary forces induced by nanopillars for thermal management applicationsZhang, Conan 01 November 2010 (has links)
This thesis presents an analytical and experimental investigation into the capillary wicking limitation of an array of pillars. Commercial and nanopillar wicks are examined experimentally to assess the effects of micro and nanoscale capillary forces. By exerting a progressively higher heat flux on the wick, a maximum achievable mass flow was observed at the capillary limit. Through the balance of capillary and viscous forces, an ab initio analytical model is also presented to support the experimental data. Comparison of the capillary limit predicted by the analytical model and actual limit observed in experimental results are presented for three baseline wicks and two nanowicks. / text
|
564 |
Optimal shape design based on body-fitted grid generation.Mohebbi, Farzad January 2014 (has links)
Shape optimization is an important step in many design processes. With the growing use of Computer Aided Engineering in the design chain, it has become very important to develop robust and efficient shape optimization algorithms. The field of Computer Aided Optimal Shape Design has grown substantially over the recent past. In the early days of its development, the method based on small shape perturbation to probe the parameter space and identify an optimal shape was routinely used. This method is nothing but an educated trial and error method. A key development in the pursuit of good shape optimization algorithms has been the advent of the adjoint method to compute the shape sensitivities more formally and efficiently. While undoubtedly, very attractive, this method relies on very sophisticated and advanced mathematical tools which are an impediment to its wider use in the engineering community. It that spirit, it is the purpose of this thesis to propose a new shape optimization algorithm based on more intuitive engineering principles and numerical procedures. In this thesis, the new shape optimization procedure which is proposed is based on the generation of a body-fitted mesh. This process maps the physical domain into a regular computational domain. Based on simple arguments relating to the use of the chain rule in the mapped domain, it is shown that an explicit expression for the shape sensitivity can be derived. This enables the computation of the shape sensitivity in one single solve, a performance analogous to the adjoint method, the current state-of-the art. The discretization is based on the Finite Difference method, a method chosen for its simplicity and ease of implementation. This algorithm is applied to the Laplace equation in the context of heat transfer problems and potential flows. The applicability of the proposed algorithm is demonstrated on a number of benchmark problems which clearly confirm the validity of the sensitivity analysis, the most important aspect of any shape optimization problem. This thesis also explores the relative merits of different minimization algorithms and proposes a technique to “fix” meshes when inverted element arises as part of the optimization process. While the problems treated are still elementary when compared to complex multiphysics engineering problems, the new methodology presented in this thesis could apply in principle to arbitrary Partial Differential Equations.
|
565 |
Simulating a Heat And Moisture transfer Panel (HAMP) for maintaining space humidity2012 September 1900 (has links)
The main objective of this thesis research is to test the applicability of a novel heat and moisture transfer panel (HAMP) in an office building to control the space humidity. A HAMP is a panel that uses a liquid desiccant to add or remove heat and moisture to or from a space. This thesis research uses the TRNSYS computer package to model an office building in four different cities representing four climatic conditions. The cities are Saskatoon, Saskatchewan; Chicago, Illinois; Phoenix, Arizona; and Miami, Florida; representing cold-dry, cool-humid, hot-dry, and hot-humid climates, respectively.
The HAMP is employed in the office building with a radiant ceiling panel (RCP) system. Three other HVAC systems are examined and compared to the system employing the HAMP. The systems are: a conventional all-air system, a RCP system with 100% outdoor air, a RCP system with a parallel dedicated outdoor air system (DOAS), and the RCP system with the HAMP and 100% outdoor air. In the latter, the HAMP covers 10% of the ceiling area and uses lithium chloride solution as the liquid desiccant at different temperatures and concentrations.
The results show that the HAMP is able to control the space humidity within the control limits in all climates. The HAMP also shows the ability to provide better humidity control than the other systems as it directly responds to the space latent loads. The HAMP is able to control the relative humidity between 26% RH and 62%, 24% RH and 57% RH, 27% RH and 60%, and 40% RH and 62% RH in Chicago, Saskatoon, Phoenix, and Miami, respectively. The HAMP is able to achieve a relative humidity of 35% in Chicago, Saskatoon, and Phoenix for 14%, 13%, and 20% of the working hours of the year, respectively. It is also able to achieve a relative humidity of 60% in Chicago, and Miami 10% and 55% of the working hours of the year, respectively.
The results also show the potential of the RCP system with the HAMP to reduce the total energy consumed by a conventional all-air system in the hot climates by 40%, and 54% in Miami and Phoenix respectively, and in the cold climates by 14% and 23% in Saskatoon and Chicago, respectively.
|
566 |
Numerical modelling of nonwoven thermal bonding process & machineryPeksen, Murat January 2008 (has links)
Nonwoven-fabrics have been in use since 1930s. Their advantages over other web fonnation methods like knitting and weaving have attracted many industries such as aerospace, automotive, sports, geotextiles, composites, battery separators etc. to explore and increase their usage. During nonwoven manufacturing, most of the laid loose webs have an insufficient strength as fonned, and require an additional bonding procedure in order to provide the produced nonwoven with its intended properties. To achieve the desired properties of the nonwoven web, the bonding process is therefore, the most important part during production. The thennal bonding through air is one of the modem techniques which is incrementally improved to increase the yield of manufactured nonwoven properties. The system has a disadvantage which is, that the production capacity and energy efficiency is very low. The entitled research aims an industrial optimisation of the thermal bonding through air by entailing a strategic approach and encompassing the whole process chain of the thennal bonding process. The comprehensive and flexible optimisation opportunities provided by the CFD has been used to aid in the control and optimisation of the thermal bonding process and machinery. To optimise the process and product quality, the complex system composing of several components and various physical phenomena occurring during processing is simulated using a hierarchical methodology. More specifically a hierarchical decomposition procedure to recast the original multi scale problem as a sequence of three scale decoupled macro-, meso-, and micro scale subproblems is exploited. The methodology is applied in conjunction with the validation of experiments on through-air bonding product lines. 2D and 3D computational fluid dynamics (CFD) models based on the continuum modelling approach and the theory of porous media coupled with the theory of mixtures are developed to treat the flow behavior, heat transfer, phase change and air moisture transport within the whole through-air bonding system. The model is concluded to be an economic computational tool hence providing rapid process optimisation and valuable infonnation early in the process, which can replace costly experiments and ensure product consistency under variable process and climate conditions. 2D and 3D hybrid modelling considering parametric discrete and continuum parts is also perfonned using conjugate heat transfer analyses. The approach precisely permits the optimisation of the machine component design and the associated optimisation of consistent process and product properties.
|
567 |
Constructal Design of Energy SystemsAlalaimi, Mohammad Ali January 2016 (has links)
<p>This dissertation shows the use of Constructal law to find the relation between the morphing of the system configuration and the improvements in the global performance of the complex flow system. It shows that the better features of both flow and heat transfer architecture can be found and predicted by using the constructal law in energy systems. Chapter 2 shows the effect of flow configuration on the heat transfer performance of a spiral shaped pipe embedded in a cylindrical conducting volume. Several configurations were considered. The optimal spacings between the spiral turns and spire planes exist, such that the volumetric heat transfer rate is maximal. The optimized features of the heat transfer architecture are robust. Chapter 3 shows the heat transfer performance of a helically shaped pipe embedded in a cylindrical conducting volume. It shows that the optimized features of the heat transfer architecture are robust with respect to changes in several physical parameters. Chapter 4 reports analytically the formulas for effective permeability in several configurations of fissured systems, using the closed-form description of tree networks designed to provide flow access. The permeability formulas do not vary much from one tree design to the next, suggesting that similar formulas may apply to naturally fissured porous media with unknown precise details, which occur in natural reservoirs. Chapter 5 illustrates a counterflow heat exchanger consists of two plenums with a core. The results show that the overall flow and thermal resistance are lowest when the core is absent. Overall, the constructal design governs the evolution of flow configuration in nature and energy systems.</p> / Dissertation
|
568 |
Thermal modelling of a truck gearboxHäggström, Martin January 2017 (has links)
The thermal regime of a gearbox is of considerable importance to its performance. Several significant gearbox parameters, such as the efficiency and fatigue life of its components, are temperature dependent. It is thus important to be able to determine the temperatures of the gearbox components during operation, but they are difficult to measure experimentally. A simulation model capable of predicting these temperatures would therefore be a valuable tool. The objective of this master’s thesis was to create a model capable of simulating the thermal regime of a truck gearbox during operation. To do this, mechanical losses in the gearbox, heat exchange with the surroundings, as well as heat transfer between components had to be accounted for. The model was created using the 1D simulation software LMS Imagine.Lab Amesim 14.0, and is based on a combination of mechanical and thermal networks. Details of the mechanical and thermal interactions between components are calculated using empirical and analytical formulas for mechanical losses and heat transfer. The result of the thesis is a model which can be used to simulate either real or idealised load cases, from which temperatures of gear wheels, shafts, bearings, housing and gearbox oil may be studied, as well as gearbox losses and heat transfer. Comparisons between simulated and measured gearbox efficiencies show good correlation. It is also shown that the model can predict oil temperatures which agree with in-vehicle measurements. Due to a lack of measurement data, most simulated component temperatures cannot be compared to measured values. However, temperature measurements performed for one of the gear wheels indicate that the model can be used to predict their temperature. In order to demonstrate the capabilities of the model, example results from both real and idealised load cases are presented.
|
569 |
Coherent unsteadiness in film coolingFawcett, Richard James January 2011 (has links)
Film cooling is vital for the cooling of the blades and vanes in the high temperature environment of a jet engine high pressure turbine stage. Previous research into film cooling has typically concentrated on its time-mean performance. However, results from other studies upon more simplified geometries, suggest that coherent unsteadiness is likely to also be present in film cooling flows. The research presented in this thesis, therefore, aims to characterise what coherent unsteadiness, if any, is present within film cooling flows. Cylindrical and shaped cooling holes, located upon the pressure surface of a turbine blade within a large scale linear cascade, have been investigated. A blowing ratio range of 0.5 to 2.0 has been investigated, with either a plenum or perpendicular crossflow at the cooling hole inlet. Particle Image Velocimetry, high speed photography and Hot Wire Anemometry have been used to investigate the jet downstream of both cooling holes. The impact of crossflow at the hole inlet upon the flowfield inside both cooling holes has been investigated using Hot Wire Anemometry and a further numerical model solved by applying TBLOCK. The results presented in the current thesis, show the existence of two coherent unsteady structures in the jet downstream of both the cylindrical and the shaped holes. These structures are called shear layer vortices and hairpin vortices, and their formation is dependent on the velocity difference across the jet shear layer. Inside the cooling hole coherent hairpin vortices also appear to occur, with their formation dependent on the direction and magnitude of the crossflow at the hole inlet. The coherent unsteadiness presented here is shown for the first time for film cooling flows, and recommendations to build on the current study, in what is potentially an interesting research area, are made at the end of this thesis.
|
570 |
Non-contacting shaft seals for gas and steam turbinesAubry, James R. January 2012 (has links)
Improvements upon current gas turbine sealing technology performance are essential for decreasing specific fuel consumption to meet stringent future efficiency targets. The clearances between rotating and static components of a gas turbine, which need to be sealed, vary over a flight cycle. Hence, a seal which can passively maintain an optimum clearance, whilst preventing contact between itself and the rotor, is extremely desirable. Various configurations of a Rolls Royce (RR) seal concept, the Large Axial Movement Face Seal (LAMFS), use static pressure forces to locate face seals. Prototypes were tested experimentally at the Osney Thermofluids Laboratory, Oxford. Firstly a proof-of concept rig (simulating a 2-D seal cross-section) manufactured by RR was re-commissioned. The simplest configuration using parallel seal faces induced an unstable seal housing behaviour. The author used this result, CFD, and analytical methods to improve the design and provide a self-centring ability. A fully annular test rig of this new seal concept was then manufactured to simulate a 3D engine representative seal. The full annulus eliminated leakage paths unavoidable in the simpler rig. A parametric program of experiments was designed to identify geometries and conditions which favoured best-practice design. The new seal design is in the process of being patented by Rolls Royce. A 'fluidic' seal was also investigated, showing very promising results. A test rig was manufactured so that a row of jets could be directed across a leakage cross-flow. An experimental program identified parameters which could achieve a combined lower leakage mass flow rate compared with the original leakage. Influence of jet spanwise spacing, injection angle, jet to mainstream pressure ratio, mainstream pressure difference and channel height were analysed. It is hoped this thesis can be used as a tool to further improve these seal concepts from the parametric trends which were identified experimentally.
|
Page generated in 0.0654 seconds