Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
541 |
Rozvoj inverzních úloh vedení tepla se zaměřením na velmi rychlé procesy v mikroskopických měřítcích / The Development of Inverse Heat Conduction Problems Focused on Very Fast Processes in MicroscalesBellerová, Hana January 2011 (has links)
The inverse heat conduction task is solved to determine boundary condition of the heat equation. This work deals with the ways how to increase the accuracy of the results obtained by solving inverse task based on the Beck sequential algorithm. The work is focused on the boundary condition changing very fast. This boundary condition is determinable with difficulty. It is shown that the placement and the type of the thermocouple play major role in accuracy of the calculation. The frequency of measuring and the discriminability of used devices also play a role as well as the setup of parameters in the inverse task. The election of mentioned parameters is described with regard to the speed of cooling. Knowledge from the theoretical part of the work is applied in the experimental part. The cooling intensity is investigated during spraying of the steel sample by water with nanoparticles Al2O3, TiO2, Fe and MWNT at three different concentrations. The experiments were carried out for three spray heights (40, 100, 160 mm), three flow rates (1, 1.5, 2 kg/min) and two types of the nozzle (full cone and solid jet). Surprisingly, the cooling intensity by using nanofluids is lower about 30% in comparison to the cooling intensity of pure water. But there was an exception. The cooling intensity of 1 wt.% of carbon nanotubes in water falling from the full cone nozzle placed in distance of 100 mm from the steel surface was higher about 174%. Finally, the reasons of the behavior of nanofluids are discussed.
|
542 |
USING PATTERNED SURFACE WETTABILITY TO ENHANCE AIR-SIDE HEAT TRANSFER THROUGH FROZEN WATER DROPLET VORTEX GENERATORSKoopman, Andrew Ernest 10 January 2020 (has links)
No description available.
|
543 |
A three-dimensional heat and mass transport model for a tree within a forestBallard, Jerrell Ray 06 August 2011 (has links)
A three-dimensional computational tool was developed that simulates the heat and mass transfer interaction in a soil-root-stem system (SRSS) for a tree in a seasonally varying deciduous forest. The development of the SRSS model involved the modification and coupling of existing heat and mass transport tools to reproduce the three-dimensional diurnal internal and external temperatures, internal fluid distribution, and heat flow in the soil, roots, and stems. The model also required the development of a parallel Monte-Carlo algorithm to simulate the solar and environmental radiation regime consisting of sky and forest radiative effects surrounding the tree. The SRSS was tested, component-wise verified, and quantitatively compared with published observations. The SRSS was applied to simulate a tree in a dense temperate hardwood forest that included the calculations of surface heat flux and comparisons between cases with fluid flow transport and periods of zero flow. Results from the winter simulations indicate that the primary influence of temperature in the trunk is solar radiation and radiative energy from the soil and surrounding trees. Results from the summer simulation differed with previous results, indicating that sap flow in the trunk altered the internal temperature change with secondary effects attributed to the radiative energy from the soil and surrounding trees. Summer simulation results also showed that with sap flow, as the soil around the roots become unsaturated, the flow path for the roots will be changed to areas where the soil is still saturated with a corresponding increase in fluid velocity.
|
544 |
SPRAY OVERLAP AND HEAT TRANSFER COEFFICIENT UNIFORMITY IN CONTINUOUS CASTINGNinad Sandeep Patil (15412307) 04 May 2023 (has links)
<p>Firstly, select a nozzle and get all its parameters like spray angle, mass flow rate, dipersion angle and nozzle diameter. Create a domain in which 2 nozzles can fit, as shown in thesis. Divide the domain in 2 zones and perform fine mesh on the top surface of solid surface where spray will heat. Write a function for slab temperature variation and give it as the solid part input. Use DPM model, to create injectors inside the domain and solve.</p>
|
545 |
Selecting the Most Effective Energy Modeling Tool Based on a Project RequirementAkande, Sodiq 01 August 2018 (has links) (PDF)
Building energy usage can be derived and controlled by performing building energy modeling. BEM can be performed using numerous software tools such as DesignBuilder, OpenStudio, EnergyPlus etc. These modeling tools can be sorted into three different modeling categories: Black-box, Gray-box and White-box. It is important for a modeler to be able to quickly select the proper tool from the proper category to meet the need of the project. To validate the method of categorizing tools, the three models generated using tools from each category and the modeling outputs required were compared. Each model was designed to estimate the amount of heat transfer through building envelope elements. All the modeling tools were able to generate the required output, therefore, the method for selecting the most effective tool will be based on the output requirements and the time it takes to build the model, time it takes to generate the output and interpret the output.
|
546 |
Thermal Analysis of a Sea Wave GeneratorQuijada, Ezequiel January 2017 (has links)
Wave power has been increasing the interest of many researchers looking for alternative sustainable energy sources since the reserves have proved to be capable of satisfying a considerable percentage of the world´s energy demands. This option has not been adopted as a sustainable source since there are some challenges in the process of designing a low cost device that converts the kinetic energy of the waves into electric energy and that could still be efficient enough to be competitive against other options. A new proposal from Anders Hagnestål looks like a very promising way of moving forward in this field. The structure of this newly proposed generator includes neodymium magnets that at temperatures over 60°C might suffer irreversible demagnetization, compromising the normal functioning of the machine. Because of the electrical losses in iron components, overheating is a possibility that must be studied. The aim of this study is to find the temperature distribution of the components that are subject to changing magnetic fields (where the losses will occur). This will be done for a variety of cases regarding environmental and working conditions with the purpose of determining if the generator will need a cooling technique to avoid damage to the magnets. The studied structure consists of a stator and a translator conformed by iron, FR4, glass fiber and, of course, the magnets. The task at hand was carried out first through a one-dimensional analytical model, then through a two-dimensional analytical model and finally by means of simulations on Comsol Multiphysics (Computer-Aided-Engineering software). All of the aforementioned methods implicate assumptions that deviate from reality, but are still useful for the task at hand. Results from the 1D calculation turned out to be unreliable due to the numerous approximations but helped to prove and understand the effect of each of the environmental conditions on the temperature distribution. On the other hand, the 2D calculations and the simulations had a very good agreement which provides some reliability. Furthermore, said results showed that the components might even reach temperatures as high as 380°C under certain conditions. As this number is clearly over the safe limit of the magnets, it was concluded that cooling techniques are needed to ensure the safety of the generator. After some discussion with Hagnestål, cooling methods were proposed. In addition to this, the seemingly most appropriate option was pointed out with the intention of achieving a low-enough temperature and keeping the costs as low as possible. This alternative was a combination of modifying geometric parameters (which would ultimately reduce heat generation) and inducing a low velocity air flow. / Vågkraft är en hittills outnyttjad förnybar energikälla som i framtiden kan tillgodose i storleksordningen 10 % av världens energibehov, om de tekniska utmaningarna kan lösas så att vågkraft kan levereras till konkurrenskraftiga priser. Därmed finns också ett starkt intresse från både akademi och näringsliv att lösa dessa utmaningar. Anders Hagnestål håller på att utveckla en ny linjär generatortyp som enligt beräkningar slår alla befintliga lösningar för effektomvandling för vågkraft med bred marginal. Maskinen har dock komplex geometri, och det är svårt att beräkna dess prestanda. Maskinen innehåller neodymmagneter, vilka kan avmagnetiseras om de blir för varma där 60°C kan ses som en gräns då magneterna börjar påverkas. Om magneterna avmagnetiseras blir maskinen svagare. Eftersom magneterna upphettas av virvelströmmar i magneterna och förluster i omgivande elektroplåt, är det av intresse att göra en termisk analys av maskinen vilket är syftet med detta examensarbete. Målet är att beräkna temperaturutbredningen i maskinens olika delar vid olika driftsfall, och se om man behöver tillföra extern kylning av maskinen för att skydda magneterna. Maskinen består av en translator som omsluter den inre statorn där magneterna är lokaliserade, vilka är byggda av fiberkompositer, elektroplåt, rostfritt stål och neodymmagneter. Beräkningar gjordes först med en endimensionell analytisk modell, därefter med en tvådimensionell analytisk modell och slutligen med numeriska beräkningar i 2D med det kommersiella finita elementmetodberäkningsprogrammet Comsol Multiphysics. Samtliga dessa modeller har avvikelser från det verkliga fallet, men är ändå användbara och ger en fingervisning om hur den termiska situationen för maskinen kan se ut. 1D-beräkningarna visade sig innehålla lite för grova approximationer för att ge pålitliga resultat, men gav en del intuitiv insikt om problemet. Den analytiska 2D-beräkningen stämde bra överens med Comsol-beräkningen, vilket indikerar att beräkningarna är korrekta. Resultaten visade på mycket höga temperaturer i vissa driftsfall utan kylsystem, 380 °C, vilket är en indikator på att antingen någon form av kylning förmodligen behövs, i.a.f. i en del driftsfall, eller att värmeförlusterna i den delen av generatorn behöver minskas genom t.ex. att pollängden ökas. En kombination av luftflöden med låg hastighet och förändrad geometri har föreslagits i examensarbetet för att minska temperaturen.
|
547 |
Heat transfer in upward flowing two-phase gas-liquid mixtures. An experimental study of heat transfer in two-phase gas-liquid mixtures flowing upwards in a vertical tube with liquid phase being driven by a pump or air injection.Alahmad, Malik I.N. January 1987 (has links)
An experimental investigation has been carried out to study the heat
transfer in a two-phase two-component mixture flowing upward inside
a 1" double pipe heat exchanger. The heat transfer coefficient was
measured using either air to lift the liquid (air-lift system) or
a mechanical pump.
The heat transfer coefficient results have been extensively studied
and compared with other workers' results. An attempt was made to correlate
the present heat transfer data in dimensionless correlations.
Possible factors affecting the two-phase heat transfer
coefficient have been studied with special attention being given to
the fluid properties, particularly the liquid viscosity. Experiments
were also carried out to investigate the effect of solid particles
added to a liquid flow on the measured heat transfer coefficient.
The present investigation was carried out using air as the gas-phase
ranging from 2x 10-5 up to 80 x 10-5 m3/s. Liquids used were water
and glycerol solutions with viscosity ranging from 0.75 up to 5.0
C. P. and flowrates between 4x 10-5 and 25 x 10-5 m3/s.
Void fraction and pressure drop were also measured during the
heat transfer process.
Flow pattern in gas-liquid mixture was investigated in a
perspex tube of identical dimensions to the heat exchanger tube.
|
548 |
Numerical Analysis of Fluid Flow and Heat Transfer in Atria GeometriesKitagawa, Aaron T. 04 1900 (has links)
<p>The design, simulation, and analysis of a reference atrium using ComputationalFluid Dynamics (CFD) are presented. Atria geometries can be observed in manybuildings but their understanding from an energy perspective is not fully understood.Due to the many physical phenomena occurring within these atria, it is often difficult toassess the thermal comfort, energy consumption, and functionality of an atrium's design.The scale of an atrium’s structure coupled with dynamic physical phenomena creates acomplex problem to solve. One particular tool that is useful in solving for detailedenergy quantities is CFD. Validation studies have been conducted using previousexperimental atria data to ensure confidence in the predictions. These validation studieswere successful and also provided further insight on turbulence models, glazing systems,HVAC systems, thermal mass, and fluid flow and heat transfer behavior in atriageometries. A design for a reference atrium located in Toronto, Canada was thensimulated for typical summer and winter conditions using various configurations forglazing, solar heat flux, wall materials, occupant load, and HVAC. These simulationsprovide a realistic analysis of the reference atria and conclusions for the behavior of thereference atria are made.</p> / Master of Applied Science (MASc)
|
549 |
A new paradigm for disc-pad interface models in friction brake systemQiu, L., Qi, Hong Sheng, Wood, Alastair S. January 2014 (has links)
In this paper a 2D coupled thermal-stress finite element model is established and used to predict thermal phenomena at the disc-pad interface of a disc brake system. The importance of certain critical settings and parameters for the 2D FE model has been identified (such as, a limited degree of freedom for a brake pad in place of accepted practice that considers uniform contact), here a non-uniform pressure distribution resulting from friction bending moment effects due to the introduction of a pivot point. These parameters affect the distributions of both interface temperature and pressure. The simulation results show that when the interface conductance h is 10^6 W/m^2K or higher, the interface temperature distribution is no longer sensitive to friction bending moment effects. However, when h is 30000 W/m^2K or lower, the interface temperature distribution and heat partition ratio are significantly affected by the setting used for the rotational degree of freedom of the pad. The simulation results provide a useful reference for a better design of a disc brake system for different applications.
|
550 |
The Effect of Density Ratio on Steep Injection Angle Purge Jet Cooling for a Converging Nozzle Guide Vane Endwall at Transonic ConditionsSibold, Ridge Alexander 17 September 2019 (has links)
The study presented herein describes and analyzes a detailed experimental investigation of the effects of density ratio on endwall thermal performance at varying blowing rates for a typical nozzle guide vane platform purge jet cooling scheme. An axisymmetric converging endwall with an upstream doublet staggered cylindrical hole purge jet cooling scheme was employed. Nominal exit flow conditions were engine representative and as follows: {rm Ma}_{Exit} = 0.85, {rm Re}_{Exit,C_{ax}} = 1.5 times {10}^6, and large-scale freestream Tu = 16%. Two blowing ratios were investigated corresponding to the upper and lower engine extrema. Each blowing ratio was investigated amid two density ratios; one representing typical experimental neglect of density ratio, at DR = 1.2, and another engine representative density ratio achieved by mixing foreign gases, DR = 1.95. All tests were conducted on a linear cascade in the Virginia Tech Transonic Blowdown Wind Tunnel using IR thermography and transient data reduction techniques. Oil paint flow visualization techniques were used to gather quantitative information regarding the alteration of endwall flow physics due two different blowing rates of high-density coolant. High resolution endwall adiabatic film cooling effectiveness, Nusselt number, and Net Heat Flux Reduction contour plots were used to analyze the thermal effects.
The effect of density is dependent on the coolant blowing rate and varies greatly from the high to low blowing condition. At the low blowing condition better near-hole film cooling performance and heat transfer reduction is facilitated with increasing density. However, high density coolant at low blowing rates isn't adequately equipped to penetrate and suppress secondary flows, leaving the SS and PS largely exposed to high velocity and temperature mainstream gases. Conversely, it is observed that density ratio only marginally affects the high blowing condition, as the momentum effects become increasingly dominant. Overall it is concluded density ratio has a first order impact on the secondary flow alterations and subsequent heat transfer distributions that occur as a result of coolant injection and should be accounted for in purge jet cooling scheme design and analysis.
Additionally, the effect of increasing high density coolant blowing rate was analyzed. Oil paint flow visualization indicated that significant secondary flow suppression occurs as a result of increasing the blowing rate of high-density coolant. Endwall adiabatic film cooling effectiveness, Nusselt number, and NHFR comparisons confirm this. Low blowing rate coolant has a more favorable thermal impact in the upstream region of the passage, especially near injection. The low momentum of the coolant is eventually dominated and entrained by secondary flows, providing less effectiveness near PS, near SS, and into the throat of the passage. The high momentum present for the high blowing rate, high-density coolant suppresses these secondary flows and provides enhanced cooling in the throat and in high secondary flow regions. However, the increased turbulence impartation due to lift off has an adverse effect on the heat load in the upstream region of the passage. It is concluded that only marginal gains near the throat of the passage are observed with an increase in high density coolant blowing rate, but severe thermal penalty is observed near the passage onset. / Master of Science / Gas turbine technology is used frequently in the burning of natural gas for power production. Increases in engine efficiency are observed with increasing firing temperatures, however this leads to the potential of overheating in the stages following. To prevent failure or melting of components, cooler air is extracted from the upstream compressor section and used to cool these components through various highly complex cooling schemes. The design and operational adequacy of these schemes is highly subject to the mainstream and coolant flow conditions, which are hard to represent in a laboratory setting.
This experimental study explores the effects of various coolant conditions, and their respective response, for a purge jet cooling scheme commonly found in engine. This scheme utilizes two rows of staggered cylindrical holes to inject air into the mainstream from platform, upstream of the nozzle guide vane. It is the hope that this air forms a protective layer, effectively shielding the platform from the hostile mainstream conditions. Currently, little research has been done to quantify these effects of purge flow cooling scheme while mimicking engine geometry, mainstream and coolant conditions.
For this study, an endwall geometry like that found in engine with a purge jet cooling scheme is studied. Commonly, an upstream gap is formed between the combustor lining and first stage vane platform, which is accounted for in this testing. Mainstream and coolant flow conditions can have large impacts on the results gathered, so both were matched to engine conditions. Varying of coolant density and injection rate is studied and quantitative results are gathered. Results indicate coolant fluid density plays a large role in purge jet cooling, and with neglection of this, potential thermal failure points could be overlooked This is exacerbated with less coolant injection. Interestingly, increasing the amount of coolant injected decreases performance across much of the passage, with only marginal gains in regions of complex flow. These results help to better explain the impacts of experimental neglect of coolant density, and aid in the understanding of purge jet coolant injection.
|
Page generated in 0.0686 seconds