• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 73
  • 55
  • 46
  • 30
  • 26
  • 26
  • 21
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
2

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
3

Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calor

Horbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
4

Otimização geométrica de cavidades e caminhos de alta condutividade empregando Design Construtal e algoritmos genéticos

Estrada, Emanuel da Silva Diaz January 2016 (has links)
No presente trabalho propõe-se empregar algoritmos genéticos em associação com o design construtal para a otimização de geometrias em problemas de transferência de calor. O objetivo principal de todos os estudos deste trabalho é minimizar a máxima temperatura que ocorre no domínio computacional. Investigou-se, inicialmente, uma cavidade isotérmica em forma de Y inserida em um sólido retangular com geração de calor uniforme a uma taxa volumétrica constante, onde foi feita uma comparação e validação do algoritmo genético frente à busca exaustiva para poucos graus de liberdade. Após, foi feita uma otimização usando somente algoritmos genéticos considerando todos os quatro graus de liberdade do problema e diferentes valores para suas restrições geométricas. O estudo seguinte foi feito considerando a mesma geometria anteriormente discutida, porém considerou-se as paredes da cavidade Y com uma condição de contorno convectiva. Da mesma forma anterior, foi feita uma validação do algoritmo genético frente à busca exaustiva e na sequência uma otimização de todos os quatro graus de liberdade e diferentes valores do parâmetro convectivo a, empregando somente algoritmos genéticos. No terceiro caso, estudou-se um caminho assimétrico em forma de V de um material de alta condutividade. A geometria tem sua base recebendo um fluxo de calor constante e o remove através das extremidades de dois braços ligados a um sumidouro de calor. Otimizou-se a forma pelo método exaustivo considerando quatro graus de liberdade e uma restrição constante . Após, usou-se algoritmos genéticos para otimizar a geometria considerando os mesmos graus de liberdade e diferentes valores para a restrição de ocupação do material condutivo. Similarmente ao caso da cavidade convectiva em forma de Y, por fim, estudou-se a otimização geométrica de um corpo cilíndrico onde cavidades convectivas retangulares com dois pares de braços são inseridas. Realizaram-se otimizações de até sete graus de liberdade e também se estudou a influência de um parâmetro convectivo e das frações de ocupação das áreas do corpo e braços da cavidade. Deste estudo, concluiu-se que quanto maior o número de cavidades, menores são as máximas temperaturas que ocorrem no domínio. Destaca-se, também, a dependência do parâmetro convectivo, que influenciou na forma da melhor geometria encontrada. Para todos os estudos feitos, os resultados mostraram que a busca por meio de algoritmos genéticos levou a uma redução significativa do número de simulações necessárias para obter a geometria ótima com resultados concordantes aos obtidos com busca exaustiva. Além disso, foi possível estender o estudo para problemas com mais graus de liberdade, restrições e propriedades térmicas. Conclui-se que o melhor design é altamente dependente dos graus de liberdade e restrições, este sendo alcançado de acordo com o princípio construtal da ótima distribuição das imperfeições. / In this work, we propose employing genetic algorithms in association with constructal design for geometry optimization in heat transfer problems. The main objective of all studies is to minimize the maximum temperature that occurs in the computational domain. It was investigated initially an isothermal Y-shaped cavity intruded into a rectangular solid conducting wall with heat generation uniformly at a volumetric rate, where a comparison and validation of genetic algorithm against exhaustive search for few degrees of freedom was made. Then, an optimization is performed by means of genetic algorithms considering all four degrees of freedom of the problem and different values for geometric constraints. The following study has been done considering the same geometry as previously discussed, but it is considered the walls of the Y-cavity with a convective boundary condition. Thus, a dimensionless heat transfer parameter to study (a) was added. Similarly, foregoing study, a genetic algorithm validation was performed comparing to the exhaustive search. After, all four degrees of freedom and different values of a parameter only using genetic algorithms were optimized. In the next investigation, an asymmetric V-shaped pathway of high conductivity material was studied. This geometry receives a constant heat transfer rate in its base and removes it by the end of the two branches that are in touch with the heat sink. The shape was optimized by exhaustive approach considering four degree of freedom and a constraint. After, we used genetic algorithms to optimize the geometry considering the same degrees of freedom and different values for the restriction. Finally, similar to the case of the Y-shaped convective cavity, rectangular convective cavities with two pairs of arms inserted into a cylindrical solid body were optimized. Optimizations of up to seven degrees of freedom were performed and the influence of the convective parameter and of the area fractions of the body and arms of the cavity, were also investigated. From this study, it was concluded that the higher the number of cavities, the lower the maximum temperatures occurring in the domain. Also, the dependence of the convective parameter, influenced in the form of the best geometry, is highlighted. For all studies carried out, the results showed that the search using genetic algorithms led to a significant reduction of the number of simulations required to obtain the optimal geometry. Moreover, it was possible to extend the study where it was considered other degrees of freedom, constraints and thermal properties. We concluded that the best design is highly dependent of degrees of freedom and constraints, and this has been achieved according to the constructal principle of optimal distribution of imperfections.
5

Constructal trees : micro-fabrication techniques and experimental methodology

Berg, Sean Michael 21 February 2011 (has links)
This report discusses the use of micro-fabrication techniques for creating experimental test sections containing trees of micro-finned conducting pathways, also referred to as constructal trees, for cooling a heat generating substrate. These trees are made of copper and contain branches that bifurcate at 90° angles to form constructal patterns. The patterns for the finalized test sections were created using photolithography techniques, and copper was deposited via thermal evaporation onto a 1 cm² substrate to create the trees. Certain test section design parameters were varied including the geometric complexity of the constructal trees, the volume of copper used between tree complexities, choice of material for the substrate, and the height, or thickness, of the trees. Also described in this report is an experimental methodology and testing apparatus designed to assess the cooling performance of the test sections. This methodology includes using controlled uniform heating applied to the bottom of each test section, while cooled nitrogen is impinged on the tip of the constructal tree to create a heat sink. / text
6

Constructal design de aleta retangular inserida em cavidade com superfície superior deslizante sob efeito de convecção mista / Constructal design of rectangular fin intruded into mixed convection lid-driven cavity flows

Machado, Bruno de Souza January 2014 (has links)
O presente trabalho apresenta um estudo numérico do escoamento laminar em cavidade quadrada aletada sob o efeito de convecção mista. O escoamento proposto é assumido bidimensional, laminar e permanente. Objetiva-se através do “Constructal Design” a obtenção de geometria ótima da aleta de forma a maximizar a transferência de calor entre o fluido que escoa no interior da cavidade e a aleta aquecida cuja base está localizada no centro da base da cavidade. Para isto é fixada a relação das dimensões externas da cavidade (H/L) = 1 e variada a relação entre altura e comprimento da aleta (H1/L1) para otimização da troca térmica. A área da aleta apresenta 5% da área total da cavidade e este valor é mantido fixo. O fluido que escoa no inteiror da cavidade possui as propriedades termofísicas do ar para Pr = 0,7. A variação das forças de empuxo no escoamento é realizada através do uso de diferentes números de Rayleigh no intervalo Ra= 10³ a 106. As diferentes magnitudes das forças inerciais serão aplicadas ao escoamento através da variação do número de Reynolds variando entre ReL = 10 e 1000. Para solução numérica das equações de conservação de massa, quantidade de movimento e energia é utilizado o método de volumes finitos (VFM), programa comercial Fluent®, sendo o acoplamento entre velocidade e pressão realizado através do algoritmo SIMPLEC e a discretização espacial pelo método upwind de primeira ordem. Os resultados apresentam um acréscimo significativo na transferência de calor entre a aleta e o fluido a medida que o número de Rayleigh aumenta. Considerando o caso de maior influência do mecanismo de transferência de calor por convecção mista houve um aumento de 779% em comparação com o mesmo caso considerando apenas convecção forçada, o que comprova a importância da convecção natural na maximização da transferência de calor entre cavidade e fluido para os casos analisados. / The present work shows a numerical study of laminar flow inside C-shaped lid-driven square cavity under mixed convection effect. The flow is assumed to be two-dimensional, laminar and permanent. The main objective of this work is by means of Constructal Design to maximize the heat transfer between the fluid and the heated central fin intruded in the bottom of the cavity. The aspect ratio of the cavity is fixed and the fin aspect ratio (H1/L1) varies from 0.1 to 10 ranges in order to maximize heat transfer. The ratio area between fin and cavity (H/L) = 1 is kept fixed at 5%. The thermophysical properties of fluid the air are set at Pr = 0,71. To vary the magnitude of buoyancy forces the Rayleigh number is ranged between Ra=10³ and 106.The inertial forces of flow are ranged by the use of different Reynolds numbers between ReL=10 and 1000. In order to solve the proposed problem, the commercial software Fluent® based on finite volume method was used to solve mass, momentum and energy equations, making the pressure-velocity couple using SIMPLEC method and the spatial discretization using first order upwind scheme. The results showed a significant increase of heat transfer between fin and fluid as consequence of Rayleigh number increase. Considering the mixed convection most influenced case, an increase of 779% was sense in comparison with the same case with forced convection mechanism only, which makes evident the importance of natural convection in the maximization of heat transfer inside cavity in the analized cases.
7

Analyse entropique et multi-échelle pour la fatigue et la rupture thermomécanique / Entropy and multi-scale analysis for fatigue and thermomechanical fracture

Ribeiro, Patrick 22 November 2017 (has links)
Ce travail de thèse apporte une contribution à l’utilisation de grandeurs thermodynamiques ainsi que géométriques en mécanique. La première partie de ce manuscrit est consacrée à l’étude de la fatigue oligocyclique, et de l’entropie de rupture en fatigue. Des entropies de rupture en fatigue sont estimées expérimentalement par diverses relations et sont comparées aux modèles empiriques utilisés dans la littérature. Il apparait que ces diverses entropies de rupture sont très proches ce qui permet de conclure qu'il existe une entropie de rupture constante liée uniquement au matériau. Pour les modèles empiriques, une extension du modèle de Ramberg-Osgood cyclique prenant en compte la variation temporelle de la contrainte est proposée et une étude sur l'imprécision du modèle de Park et Nelson est réalisée. Puis, une étude des différentes phases durant le test de fatigue est effectuée à travers l’étude de l’endommagement lié à l’entropie accumulée par le matériau. Une extension par l’utilisation du concept d’exergie permet la mise en évidence d’une nouvelle quantité, une exergie associée au travail de déformation plastique faisant intervenir une notion de qualité de la déformation plastique. Dans une deuxième partie, la diffusion de l’entropie d’échelle est étudiée et permet de créer divers comportements dépendants d’échelle. Elle permet d’étudier la log-périodicité d’un fractal déterministe fini (ou préfractal) ou de vérifier la construction de géométries déterministes finies dépendantes d’échelle. Une application de ces modèles dépendants d’échelle est effectuée dans le cadre de la détermination de propriétés mécaniques, pour l’analyse de faciès de rupture et pour la fragmentation. Finalement un lien possible entre comportement mécanique, géométrie et théorie constructale est présenté. / This Phd thesis is a contribution to the use of thermodynamics and geometry in mechanics. The first part of this manuscript is devoted to the study of low cycle fatigue and the notion of fracture fatigue entropy. Fracture fatigue entropies are experimentally estimated by various equations and compared to empirical models used in the litterature. It appears that these diverse fracture fatigue entropies are very close and allows to conclude that a constant fracture fatigue entropy exists only depending on the material. For the empirical models, an extension of the Ramberg-Osgood model is proposed taking into account the temporal variation of the loading, and, a study on the inaccuracy of the Park and Nelson model is realized. Then, a study on the different phases occurring in a fatigue test is done through the study of a damage parameter based on the entropy accumulated by the material. An extension using the concept of exergy allows the highlight of a new quantity, an exergy associated with plastic strain involving a quality factor. In a second part, the diffusion of scale-entropy is studied and permits to create various scale-dependent behaviors. It allows the study of log-periodicity of a finite deterministic fractal (or prefractal), or the verification of finite deterministic scale-dependent geometries. An application of these scale-dependent models is performed within the framework of the determination of mechanical properties, for the analysis of fractured surfaces and for fragmentation. Finally, a possible link between mechanical behavior, geometry and constructal theory is presented.
8

Otimização geométrica de cavidades e caminhos de alta condutividade empregando Design Construtal e algoritmos genéticos

Estrada, Emanuel da Silva Diaz January 2016 (has links)
No presente trabalho propõe-se empregar algoritmos genéticos em associação com o design construtal para a otimização de geometrias em problemas de transferência de calor. O objetivo principal de todos os estudos deste trabalho é minimizar a máxima temperatura que ocorre no domínio computacional. Investigou-se, inicialmente, uma cavidade isotérmica em forma de Y inserida em um sólido retangular com geração de calor uniforme a uma taxa volumétrica constante, onde foi feita uma comparação e validação do algoritmo genético frente à busca exaustiva para poucos graus de liberdade. Após, foi feita uma otimização usando somente algoritmos genéticos considerando todos os quatro graus de liberdade do problema e diferentes valores para suas restrições geométricas. O estudo seguinte foi feito considerando a mesma geometria anteriormente discutida, porém considerou-se as paredes da cavidade Y com uma condição de contorno convectiva. Da mesma forma anterior, foi feita uma validação do algoritmo genético frente à busca exaustiva e na sequência uma otimização de todos os quatro graus de liberdade e diferentes valores do parâmetro convectivo a, empregando somente algoritmos genéticos. No terceiro caso, estudou-se um caminho assimétrico em forma de V de um material de alta condutividade. A geometria tem sua base recebendo um fluxo de calor constante e o remove através das extremidades de dois braços ligados a um sumidouro de calor. Otimizou-se a forma pelo método exaustivo considerando quatro graus de liberdade e uma restrição constante . Após, usou-se algoritmos genéticos para otimizar a geometria considerando os mesmos graus de liberdade e diferentes valores para a restrição de ocupação do material condutivo. Similarmente ao caso da cavidade convectiva em forma de Y, por fim, estudou-se a otimização geométrica de um corpo cilíndrico onde cavidades convectivas retangulares com dois pares de braços são inseridas. Realizaram-se otimizações de até sete graus de liberdade e também se estudou a influência de um parâmetro convectivo e das frações de ocupação das áreas do corpo e braços da cavidade. Deste estudo, concluiu-se que quanto maior o número de cavidades, menores são as máximas temperaturas que ocorrem no domínio. Destaca-se, também, a dependência do parâmetro convectivo, que influenciou na forma da melhor geometria encontrada. Para todos os estudos feitos, os resultados mostraram que a busca por meio de algoritmos genéticos levou a uma redução significativa do número de simulações necessárias para obter a geometria ótima com resultados concordantes aos obtidos com busca exaustiva. Além disso, foi possível estender o estudo para problemas com mais graus de liberdade, restrições e propriedades térmicas. Conclui-se que o melhor design é altamente dependente dos graus de liberdade e restrições, este sendo alcançado de acordo com o princípio construtal da ótima distribuição das imperfeições. / In this work, we propose employing genetic algorithms in association with constructal design for geometry optimization in heat transfer problems. The main objective of all studies is to minimize the maximum temperature that occurs in the computational domain. It was investigated initially an isothermal Y-shaped cavity intruded into a rectangular solid conducting wall with heat generation uniformly at a volumetric rate, where a comparison and validation of genetic algorithm against exhaustive search for few degrees of freedom was made. Then, an optimization is performed by means of genetic algorithms considering all four degrees of freedom of the problem and different values for geometric constraints. The following study has been done considering the same geometry as previously discussed, but it is considered the walls of the Y-cavity with a convective boundary condition. Thus, a dimensionless heat transfer parameter to study (a) was added. Similarly, foregoing study, a genetic algorithm validation was performed comparing to the exhaustive search. After, all four degrees of freedom and different values of a parameter only using genetic algorithms were optimized. In the next investigation, an asymmetric V-shaped pathway of high conductivity material was studied. This geometry receives a constant heat transfer rate in its base and removes it by the end of the two branches that are in touch with the heat sink. The shape was optimized by exhaustive approach considering four degree of freedom and a constraint. After, we used genetic algorithms to optimize the geometry considering the same degrees of freedom and different values for the restriction. Finally, similar to the case of the Y-shaped convective cavity, rectangular convective cavities with two pairs of arms inserted into a cylindrical solid body were optimized. Optimizations of up to seven degrees of freedom were performed and the influence of the convective parameter and of the area fractions of the body and arms of the cavity, were also investigated. From this study, it was concluded that the higher the number of cavities, the lower the maximum temperatures occurring in the domain. Also, the dependence of the convective parameter, influenced in the form of the best geometry, is highlighted. For all studies carried out, the results showed that the search using genetic algorithms led to a significant reduction of the number of simulations required to obtain the optimal geometry. Moreover, it was possible to extend the study where it was considered other degrees of freedom, constraints and thermal properties. We concluded that the best design is highly dependent of degrees of freedom and constraints, and this has been achieved according to the constructal principle of optimal distribution of imperfections.
9

Constructal design de aleta retangular inserida em cavidade com superfície superior deslizante sob efeito de convecção mista / Constructal design of rectangular fin intruded into mixed convection lid-driven cavity flows

Machado, Bruno de Souza January 2014 (has links)
O presente trabalho apresenta um estudo numérico do escoamento laminar em cavidade quadrada aletada sob o efeito de convecção mista. O escoamento proposto é assumido bidimensional, laminar e permanente. Objetiva-se através do “Constructal Design” a obtenção de geometria ótima da aleta de forma a maximizar a transferência de calor entre o fluido que escoa no interior da cavidade e a aleta aquecida cuja base está localizada no centro da base da cavidade. Para isto é fixada a relação das dimensões externas da cavidade (H/L) = 1 e variada a relação entre altura e comprimento da aleta (H1/L1) para otimização da troca térmica. A área da aleta apresenta 5% da área total da cavidade e este valor é mantido fixo. O fluido que escoa no inteiror da cavidade possui as propriedades termofísicas do ar para Pr = 0,7. A variação das forças de empuxo no escoamento é realizada através do uso de diferentes números de Rayleigh no intervalo Ra= 10³ a 106. As diferentes magnitudes das forças inerciais serão aplicadas ao escoamento através da variação do número de Reynolds variando entre ReL = 10 e 1000. Para solução numérica das equações de conservação de massa, quantidade de movimento e energia é utilizado o método de volumes finitos (VFM), programa comercial Fluent®, sendo o acoplamento entre velocidade e pressão realizado através do algoritmo SIMPLEC e a discretização espacial pelo método upwind de primeira ordem. Os resultados apresentam um acréscimo significativo na transferência de calor entre a aleta e o fluido a medida que o número de Rayleigh aumenta. Considerando o caso de maior influência do mecanismo de transferência de calor por convecção mista houve um aumento de 779% em comparação com o mesmo caso considerando apenas convecção forçada, o que comprova a importância da convecção natural na maximização da transferência de calor entre cavidade e fluido para os casos analisados. / The present work shows a numerical study of laminar flow inside C-shaped lid-driven square cavity under mixed convection effect. The flow is assumed to be two-dimensional, laminar and permanent. The main objective of this work is by means of Constructal Design to maximize the heat transfer between the fluid and the heated central fin intruded in the bottom of the cavity. The aspect ratio of the cavity is fixed and the fin aspect ratio (H1/L1) varies from 0.1 to 10 ranges in order to maximize heat transfer. The ratio area between fin and cavity (H/L) = 1 is kept fixed at 5%. The thermophysical properties of fluid the air are set at Pr = 0,71. To vary the magnitude of buoyancy forces the Rayleigh number is ranged between Ra=10³ and 106.The inertial forces of flow are ranged by the use of different Reynolds numbers between ReL=10 and 1000. In order to solve the proposed problem, the commercial software Fluent® based on finite volume method was used to solve mass, momentum and energy equations, making the pressure-velocity couple using SIMPLEC method and the spatial discretization using first order upwind scheme. The results showed a significant increase of heat transfer between fin and fluid as consequence of Rayleigh number increase. Considering the mixed convection most influenced case, an increase of 779% was sense in comparison with the same case with forced convection mechanism only, which makes evident the importance of natural convection in the maximization of heat transfer inside cavity in the analized cases.
10

Otimização geométrica de cavidades e caminhos de alta condutividade empregando Design Construtal e algoritmos genéticos

Estrada, Emanuel da Silva Diaz January 2016 (has links)
No presente trabalho propõe-se empregar algoritmos genéticos em associação com o design construtal para a otimização de geometrias em problemas de transferência de calor. O objetivo principal de todos os estudos deste trabalho é minimizar a máxima temperatura que ocorre no domínio computacional. Investigou-se, inicialmente, uma cavidade isotérmica em forma de Y inserida em um sólido retangular com geração de calor uniforme a uma taxa volumétrica constante, onde foi feita uma comparação e validação do algoritmo genético frente à busca exaustiva para poucos graus de liberdade. Após, foi feita uma otimização usando somente algoritmos genéticos considerando todos os quatro graus de liberdade do problema e diferentes valores para suas restrições geométricas. O estudo seguinte foi feito considerando a mesma geometria anteriormente discutida, porém considerou-se as paredes da cavidade Y com uma condição de contorno convectiva. Da mesma forma anterior, foi feita uma validação do algoritmo genético frente à busca exaustiva e na sequência uma otimização de todos os quatro graus de liberdade e diferentes valores do parâmetro convectivo a, empregando somente algoritmos genéticos. No terceiro caso, estudou-se um caminho assimétrico em forma de V de um material de alta condutividade. A geometria tem sua base recebendo um fluxo de calor constante e o remove através das extremidades de dois braços ligados a um sumidouro de calor. Otimizou-se a forma pelo método exaustivo considerando quatro graus de liberdade e uma restrição constante . Após, usou-se algoritmos genéticos para otimizar a geometria considerando os mesmos graus de liberdade e diferentes valores para a restrição de ocupação do material condutivo. Similarmente ao caso da cavidade convectiva em forma de Y, por fim, estudou-se a otimização geométrica de um corpo cilíndrico onde cavidades convectivas retangulares com dois pares de braços são inseridas. Realizaram-se otimizações de até sete graus de liberdade e também se estudou a influência de um parâmetro convectivo e das frações de ocupação das áreas do corpo e braços da cavidade. Deste estudo, concluiu-se que quanto maior o número de cavidades, menores são as máximas temperaturas que ocorrem no domínio. Destaca-se, também, a dependência do parâmetro convectivo, que influenciou na forma da melhor geometria encontrada. Para todos os estudos feitos, os resultados mostraram que a busca por meio de algoritmos genéticos levou a uma redução significativa do número de simulações necessárias para obter a geometria ótima com resultados concordantes aos obtidos com busca exaustiva. Além disso, foi possível estender o estudo para problemas com mais graus de liberdade, restrições e propriedades térmicas. Conclui-se que o melhor design é altamente dependente dos graus de liberdade e restrições, este sendo alcançado de acordo com o princípio construtal da ótima distribuição das imperfeições. / In this work, we propose employing genetic algorithms in association with constructal design for geometry optimization in heat transfer problems. The main objective of all studies is to minimize the maximum temperature that occurs in the computational domain. It was investigated initially an isothermal Y-shaped cavity intruded into a rectangular solid conducting wall with heat generation uniformly at a volumetric rate, where a comparison and validation of genetic algorithm against exhaustive search for few degrees of freedom was made. Then, an optimization is performed by means of genetic algorithms considering all four degrees of freedom of the problem and different values for geometric constraints. The following study has been done considering the same geometry as previously discussed, but it is considered the walls of the Y-cavity with a convective boundary condition. Thus, a dimensionless heat transfer parameter to study (a) was added. Similarly, foregoing study, a genetic algorithm validation was performed comparing to the exhaustive search. After, all four degrees of freedom and different values of a parameter only using genetic algorithms were optimized. In the next investigation, an asymmetric V-shaped pathway of high conductivity material was studied. This geometry receives a constant heat transfer rate in its base and removes it by the end of the two branches that are in touch with the heat sink. The shape was optimized by exhaustive approach considering four degree of freedom and a constraint. After, we used genetic algorithms to optimize the geometry considering the same degrees of freedom and different values for the restriction. Finally, similar to the case of the Y-shaped convective cavity, rectangular convective cavities with two pairs of arms inserted into a cylindrical solid body were optimized. Optimizations of up to seven degrees of freedom were performed and the influence of the convective parameter and of the area fractions of the body and arms of the cavity, were also investigated. From this study, it was concluded that the higher the number of cavities, the lower the maximum temperatures occurring in the domain. Also, the dependence of the convective parameter, influenced in the form of the best geometry, is highlighted. For all studies carried out, the results showed that the search using genetic algorithms led to a significant reduction of the number of simulations required to obtain the optimal geometry. Moreover, it was possible to extend the study where it was considered other degrees of freedom, constraints and thermal properties. We concluded that the best design is highly dependent of degrees of freedom and constraints, and this has been achieved according to the constructal principle of optimal distribution of imperfections.

Page generated in 0.0456 seconds