• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 73
  • 55
  • 46
  • 30
  • 26
  • 26
  • 21
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Constructal design de dispositivos conversores de energia das ondas do mar em energia elétrica do tipo coluna de água oscilante / Constructal design of an oscillating water column device for the conversion of wave ocean energy into electrical energy

Gomes, Mateus das Neves January 2014 (has links)
O presente trabalho apresenta um estudo numérico bidimensional sobre a otimização da geometria de um dispositivo conversor de energia das ondas do mar em energia elétrica. O objetivo principal é, através da modelagem computacional de um dispositivo cujo principio de funcionamento é o de Coluna de Água Oscilante (CAO) e do emprego de Constructal Design, maximizar a conversão da energia das ondas do mar em energia elétrica. Essa técnica é baseada na Teoria Constructal. O aspecto inédito deste trabalho, em relação aos estudos disponíveis na literatura, é o fato de levar em conta o clima de ondas de uma dada região e, a partir disso, dimensionar o dispositivo de modo que ele tenha um desempenho otimizado. Para tanto, foi empregado o método Constructal Design, os graus de liberdade empregados são: H1/L (razão entre a altura e o comprimento da câmara CAO) e H3 (profundidade de submersão do dispositivo CAO). A relação H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) é considerada um parâmetro fixo. Foram realizados estudos levando em conta uma onda em escala de laboratório e um espectro de ondas real. Foi também realizado um estudo sobre a influência da perda de carga da turbina através de uma restrição física. Para a solução numérica foi empregado um código comercial de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). A geometria e a geração a malha foi realizada no software GAMBIT®. O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com o dispositivo CAO acoplado. Os resultados obtidos mostram que é possível estabelecer uma razão de H1/L ótimo, conhecendo-se o clima de ondas, ou seja, o recomendável é que esta razão seja igual a quatro vezes a altura da onda dividido pelo comprimento da onda incidente. / The present work presents a two-dimensional numerical study about the geometric optimization of an ocean Wave Energy Converter (WEC) into electrical energy. The main goal is, through computational modeling of a device whose operating principle is the Oscillating Water Column (OWC) and from employment Constructal Design, to maximize the conversion of energy of ocean waves into electricity. This technique is based on Constructal Theory. The inedited aspect of this work comparing to the available studies is that it takes into account the wave climate of a given region to design the device so that it achieves optimum performance. Constructal Design is employed varying the degrees of freedom H1/L (ratio between the height and length of OWC chamber) and H3 (lip submergence). While the relation H2/l (ratio between height and length of chimney) is kept fixed. Studies were performed considering a wave on a laboratory scale and a spectrum of real waves. Yet a study of the influence of the turbine pressure losses was performed using a physical constraint. For the numerical solution it is used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The geometry and mesh generation was performed in GAMBIT ® software. The multiphasic Volume of Fluid (VOF) model is applied to tackle with the water-air interaction. The computational domain is represented by an OWC device coupled with the wave tank. The results show that it is possible to establish a relationship of H1 / L optimum, if the wave climate is know. It is recommended that this ratio be equal to four times the height of the wave divided by the length of the incident wave.
42

Constructal Design of Energy Systems

Alalaimi, Mohammad Ali January 2016 (has links)
<p>This dissertation shows the use of Constructal law to find the relation between the morphing of the system configuration and the improvements in the global performance of the complex flow system. It shows that the better features of both flow and heat transfer architecture can be found and predicted by using the constructal law in energy systems. Chapter 2 shows the effect of flow configuration on the heat transfer performance of a spiral shaped pipe embedded in a cylindrical conducting volume. Several configurations were considered. The optimal spacings between the spiral turns and spire planes exist, such that the volumetric heat transfer rate is maximal. The optimized features of the heat transfer architecture are robust. Chapter 3 shows the heat transfer performance of a helically shaped pipe embedded in a cylindrical conducting volume. It shows that the optimized features of the heat transfer architecture are robust with respect to changes in several physical parameters. Chapter 4 reports analytically the formulas for effective permeability in several configurations of fissured systems, using the closed-form description of tree networks designed to provide flow access. The permeability formulas do not vary much from one tree design to the next, suggesting that similar formulas may apply to naturally fissured porous media with unknown precise details, which occur in natural reservoirs. Chapter 5 illustrates a counterflow heat exchanger consists of two plenums with a core. The results show that the overall flow and thermal resistance are lowest when the core is absent. Overall, the constructal design governs the evolution of flow configuration in nature and energy systems.</p> / Dissertation
43

Otimização numérica do escoamento interno em estruturas em forma de T aplicando o método design construtal

Pepe, Vinicius da Rosa January 2018 (has links)
Este trabalho tem como propósito, investigar a validade da lei de Hess-Murray, através da experimentação numérica, aplicando o método do Design Construtal associado ao método de otimização da busca exaustiva, no escoamento interno em estruturas em forma de T com seção circular. Variação do número de Reynolds, escoamento de fluidos newtonianos e não newtonianos, estrutura em forma de T com paredes impermeáveis e permeáveis, foram as principais características avaliadas para confrontar a lei de Hess-Murray. O estudo proposto assume escoamento tridimensional, laminar, incompressível, regime permanente e propriedades fluidodinâmicas constantes, sendo o regime de escoamento governado pelo número de Reynolds (Re). O objetivo principal consiste em determinar as configurações ótimas que facilitem o escoamento de fluido ou minimizem as resistências ao escoamento, quando a área ocupada pelos dutos (A) e o volume ocupado pelos dutos (V) são mantidos constantes, variando-se as razões de diâmetros (aD) e comprimentos (aL). As equações de conservação de massa e quantidade de movimento, foram resolvidas através do método de volumes finitos. A geometria foi discretizada através de uma malha tridimensional composta por aproximadamente 1.950.000 elementos. Como resultados, obteve-se as geometrias ótimas que apresentaram resistências ao escoamento até 30 vezes menor do que as demais configurações. Além disso, foi possível verificar que a lei de Hess-Murray nem sempre é válida, visto que o sistema adapta sua geometria ótima para cada condição de escoamento, a fim de proporcionar a melhor arquitetura de escoamento para atender ao objetivo de minimizar as resistências ao escoamento em acordo com a Lei Construtal. Esta dissertação avançou no presente estado da arte, pois desenvolveu um modelo tridimensional sem simplificações, aplicado ao sistema de escoamento de fluidos em estrutura em forma de T utilizando o método do Design Construtal, validando os resultados analíticos apresentados na bibliografia e apresentando novas referências que permitem ampliar a complexidade dos sistemas de escoamento bem como a implementação de métodos de otimização mais avançados. / This work investigates, through the numerical experimentation together with the Construtal Design method, the Hess-Murray Law in the internal flow in T-shaped structures with a circular section for the laminar flow of Newtonian and non-Newtonian fluids with impermeable and permeable walls, determining the optimal configurations that facilitate fluid flow or minimize flow resistance. The geometric global constants, the volume occupied by the ducts (V) and the area occupied by the ducts (A), delimit the space occupied by the T-shaped structure and the degrees of freedom, the ratio between the diameter of the parent duct and daughter (aD) and the ratio between parent duct length and daughter (aL), are the main geometric parameters to be evaluated. The proposed study is assumed three-dimensional, laminar, incompressible, permanent and constant fluidodynamic properties being the flow regime governed by Reynolds number (Re). Construtal Design method, associated with the exhaustive search, was used to determine the global geometric constants, degrees of freedom and objective function in the geometric evaluation of the system. The numerical solution of the mass conservation and momentum equations is solved based on the finite volume method. The geometries and mesh of the computational domain was discretized through a three-dimensional composed of approximately 1,950,000 elements. The results show that the optimal geometries that presented resistance to the flow up to 30 times smaller than the other configurations. In addition, it was possible to verify that the Hess-Murray Law is not always valid, since the system adapts its optimal geometry to each flow condition, in order to provide a better flow architecture to meet the objective of minimizing resistance to flow in agreement with the Constructal Law. This work advanced in the present state of the art, since it developed a three-dimensional model without simplifications, applied to the fluid flow system in T-shaped structure using the Construtal Design method, validating the analytical results presented in the bibliography and presenting new references that allow increase the complexity of flow systems as well as the implementation of more advanced optimization methods.
44

Estudo numérico e design construtal de escoamentos laminares bifurcados em forma de Y

Sehn, Alysson January 2018 (has links)
Este trabalho tem como propósito investigar como a variação geométrica de determinados parâmetros envolvidos na construção de uma geometria bifurcada de seção circular, em forma de Y, afeta a resistência ao escoamento, tanto de fluidos newtonianos como não newtonianos. As geometrias estudadas foram construídas utilizando-se o princípio do Design Construtal. Os parâmetros variados foram a relação entre os comprimentos dos dutos pais e filhos, a relação entre os diâmetros dos mesmos dutos, e o ângulo central da estrutura em forma de Y. Para as relações geométricas lineares foram utilizados os valores de 0,5; 0,6; 0,7; 0,8; 0,9 e 1, enquanto para os ângulos, foram utilizados os valores de 155°, 135°, 115°, 95°, 75°, 45°, 25° e 10°. Os fluidos utilizados foram do tipo newtoniano e não newtoniano, dentre estes últimos, foram estudados fluidos pseudoplásticos e dilatantes. O trabalho foi realizado através de simulações numéricas, implementadas com a utilização do software comercial Ansys Fluent, o qual resolve as equações governantes através do método dos volumes finitos. As malhas utilizadas foram do tipo poliédrica. Os resultados indicam que há uma diferença em relação ao que se espera da literatura para as relações entre os diâmetros e os comprimentos. A Lei Hess-Murray indica que estas relações ótimas seriam de 2-1/3 para as relações entre os diâmetros e comprimentos. No presente trabalho, foram determinadas relações entre os diâmetros próximas de 0,6, e entre os comprimentos, iguais a 1. Os ângulos ótimos ficaram localizados no intervalo entre 100° e 135°. / This work aims to investigate how the geometric variation of certain parameters involved in the construction of a bifurcated Y-shaped circular cross-section geometry affects the flow resistance of both Newtonian and non-Newtonian fluids. The geometries studied were constructed using the Constructal Design principle. The parameters were the relationship between the lengths of the daughter and parent ducts, the relationship between the diameters of the same ducts, and the central angle of the Y-shaped structure. For the linear geometric relations, values of 0.5; 0.6; 0.7; 0.8; 0.9 and 1 where used, for the angles, the values of 155 °, 135 °, 115 °, 95°, 75 °, 45 °, 25 ° and 10 ° were used. The fluids used were of the Newtonian and non-Newtonian type, among the latter, pseudo plastic and dilatant fluids were studied. The work was carried out through numerical simulations, implemented with the commercial software Ansys Fluent, which solves the governing equations through the finite volume method. The meshes used were of the polyhedral type. The results indicate that there is a difference in relation to what is expected from the literature for the relationships between diameters and lengths. The Hess-Murray Law indicates that these optimal relations would be 2-1/3 for the relationships between diameters and lengths. In the present work, relationships between the diameters close to 0,6 were found and s equal to 1 between the lengths. The optimum angles were located in the range between 100 ° and 135 °.
45

Diseño constructal de conductos elípticos de refrigeración en álabes de turbinas de gas

Bosc, Cristian January 2017 (has links)
As turbinas a gás (TG) são máquinas usadas para transformar a energia térmica liberada na combustão de um hidrocarboneto em trabalho. A parte crítica para a concepção das TG encontra-se nas secções expostas a condições mecânicas e térmicas extremas, tais como as primeiras pás da turbina. A eficiência das TG é limitada pela temperatura máxima que podem suportar os materiais das pás sem escoamento ou deformação. Atualmente, a temperatura máxima de operação encontra-se acima da temperatura de escoamento do material, permitido pelo uso de técnicas de revestimentos cerâmicos com uma baixa condutividade térmica, (revestimento de proteção térmica, TBC) e técnicas de arrefecimento das pás. O arrefecimento interno é realizado com canais internos através dos quais escorre ar que é extraído do compressor principal. Como esse ar não é utilizado para gerar trabalho, é necessário otimizar as técnicas de arrefecimento. O presente trabalho melhora o nível de arrefecimento interno de uma pá de TG, através da otimização do desenho dos canais de arrefecimento mediante a utilização da Teoria Constructal Uma configuração com dois canais elípticos de diferentes geometrias é analisado, com o objetivo de otimizar a sua posição, área e razão de aspecto, procurando gerar uma redução da temperatura máxima no metal. São desenvolvidos quatro modelos com diferentes condições de contorno, incluindo no terceiro modelo a transferência de calor por convecção e radiação e um revestimento de barreira térmica. As conclusões gerais do trabalho estabelecem que os requisitos de máxima eficiência de dissipação de calor e mínima temperatura máxima no metal podem gerar modelos levemente diferentes. No entanto, ambos indicadores do desempenho térmico da pá estão intimamente relacionados, porem, sem grande variação de um design ótimo com relação ao outro, nem uma grande variação nas magnitudes da temperatura máxima ou da eficiência. O design que fornece a mínima temperatura máxima no metal é composto por canais elípticos achatados com a menor razão de aspecto e de igual área, distribuindo o ar de arrefecimento na maior quantidade de canais possíveis. A aplicação do Design Constructal nos canais internos de arrefecimento em TG reduz a temperatura máxima no metal, podendo constituir uma melhoria na vida útil das pás.
46

Design construtal de caminhos de condução assimétricos trifurcados

Fagundes, Tadeu Mendonça January 2016 (has links)
O presente trabalho utiliza o método Design Construtal para desenvolver o estudo numérico de uma configuração de caminhos de alta condutividade de geometria trifurcada que minimiza a resistência ao fluxo de calor, quando a área do caminho trifurcado é mantida constante. O objetivo deste trabalho é o estudo da influência da geometria sobre o desempenho térmico do sistema bem como a otimização do mesmo, assim obtendo uma configuração que minimiza a resistência térmica para cada condição imposta. São apresentadas as considerações e hipóteses utilizadas para a análise, obtendo a equação do calor regente e as condições de contorno do problema, bem como a função objetivo. Para a solução numérica da equação da condução do calor, é utilizado o software MATLAB ®, especificamente as ferramentas PDETOOL, Partial Differential Equations Tool, e GA, Algoritmo Genético. A resistência térmica é minimizada para cada grau de liberdade. A cada nível de otimização, a influência do grau de liberdade em questão é estudada, obtendo um mapeamento da importância de cada grau de liberdade sobre o sistema trifurcado. Também são obtidas as configurações ótimas para diferentes frações de área. Posteriormente, é estudado o comportamento da configuração ótima do sistema para diferentes temperaturas do final das bifurcações do sistema, mostrando que, para as temperaturas estudadas neste trabalho, a configuração ótima não se altera, apenas a resistência térmica, com a alteração na temperatura do sumidouro direito sendo mais influente sobre essa, seguida do sumidouro central e, por fim, do sumidouro esquerdo. Finalmente, este trabalho mostra, com esses resultados, que a geometria ótima é aquela que melhor distribui as imperfeições do sistema, de acordo com o princípio da ótima distribuição das imperfeições e, também, possui robustez quanto às pequenas imperfeições inseridas no sistema. / The present work employs Constructal Design method to develop a numerical study of a triforked high conductivity pathway that minimizes the heat flow resistance when the triforked pathway area is kept constant. The objective of this work is the study of the influence of the geometry over the thermal performance of the system as well as the optimization of the latter, thus obtaining a configuration that minimizes the thermal resistance for each imposed condition. The considerations and hypothesis for the analysis are shown, obtaining a reigning heat equation and boundary conditions for the system, as well as the objetctive function (minimization of the maximum temperature). For the numerical solution of the heat conduction equation, it is utilized MATLAB ® software, specifically the PDETOOL, Partial Differential Equations Tool, and GA, Genetic Algorithm, toolboxes. The thermal resistance is minimized for every degree of freedom. In each level of optimization, the influence of the degree of freedom in question is studied, obtaining a mapping of the importance of each degree of freedom over the performance of the triforked pathway. Optimal configurations are also obtained for different area fractions. Posteriorly, the behavior of the optimal geometry is studied for different temperatures of the branches of the system. Results show that, for the temperatures studied in this work, the optimal configuration does not change, only the thermal resistance, with the increase of temperature of the right sink being more influential over it, followed by the temperature of the middle sink and, at last, the temperature of the left sink. Finally, this work shows, with these results, that the optimal geometry is the one that better distributes the imperfections of the systems, which is in accordance to the principle of the optimal distribution of imperfections, while possessing a certain robustness over small imperfections inserted in the system.
47

Constructal Vascularized Structures for Cooling and Mechanical Strength

Cetkin, Erdal January 2013 (has links)
<p>This dissertation shows how to use Constructal theory in order to design vascular structures with high cooling performance and mechanical strength. The vascular structures consist of grid, tree and hybrid (grid + tree) designs. The four chapters show how the cooling performance and mechanical strength can be increased by varying the vascular structure embedded in a plate for different models and boundary conditions. Chapter 2 shows that the fastest spreading or collecting flow (i.e. the steepest S curve) is discovered by allowing the tree architecture to morph freely. The angles between the lines of the invading tree architecture can be morphed (changed, selected) such that the overall flow proceeds along the fastest route, covering the greatest territory at any moment. Chapter 3 shows development of vascular designs that provide cooling and mechanical strength at the same time. This concept is illustrated with a circular plate vascularized with embedded channels. Chapter 4 shows how vascular design controls the cooling and mechanical performance of a solid slab heated uniformly and loaded with uniform pressure. Chapter 5 shows that a plate heated by a randomly moving beam can be cooled effectively by fluid that flows through a vasculature of channels embedded in the plate. In sum, constructal design governs the evolution of flow structures that offer flow access and mechanical strength at the same time.</p> / Dissertation
48

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers

Kim, Yong Sung January 2010 (has links)
<p>This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.</p> / Dissertation
49

Otimização numérica do escoamento interno em estruturas em forma de T aplicando o método design construtal

Pepe, Vinicius da Rosa January 2018 (has links)
Este trabalho tem como propósito, investigar a validade da lei de Hess-Murray, através da experimentação numérica, aplicando o método do Design Construtal associado ao método de otimização da busca exaustiva, no escoamento interno em estruturas em forma de T com seção circular. Variação do número de Reynolds, escoamento de fluidos newtonianos e não newtonianos, estrutura em forma de T com paredes impermeáveis e permeáveis, foram as principais características avaliadas para confrontar a lei de Hess-Murray. O estudo proposto assume escoamento tridimensional, laminar, incompressível, regime permanente e propriedades fluidodinâmicas constantes, sendo o regime de escoamento governado pelo número de Reynolds (Re). O objetivo principal consiste em determinar as configurações ótimas que facilitem o escoamento de fluido ou minimizem as resistências ao escoamento, quando a área ocupada pelos dutos (A) e o volume ocupado pelos dutos (V) são mantidos constantes, variando-se as razões de diâmetros (aD) e comprimentos (aL). As equações de conservação de massa e quantidade de movimento, foram resolvidas através do método de volumes finitos. A geometria foi discretizada através de uma malha tridimensional composta por aproximadamente 1.950.000 elementos. Como resultados, obteve-se as geometrias ótimas que apresentaram resistências ao escoamento até 30 vezes menor do que as demais configurações. Além disso, foi possível verificar que a lei de Hess-Murray nem sempre é válida, visto que o sistema adapta sua geometria ótima para cada condição de escoamento, a fim de proporcionar a melhor arquitetura de escoamento para atender ao objetivo de minimizar as resistências ao escoamento em acordo com a Lei Construtal. Esta dissertação avançou no presente estado da arte, pois desenvolveu um modelo tridimensional sem simplificações, aplicado ao sistema de escoamento de fluidos em estrutura em forma de T utilizando o método do Design Construtal, validando os resultados analíticos apresentados na bibliografia e apresentando novas referências que permitem ampliar a complexidade dos sistemas de escoamento bem como a implementação de métodos de otimização mais avançados. / This work investigates, through the numerical experimentation together with the Construtal Design method, the Hess-Murray Law in the internal flow in T-shaped structures with a circular section for the laminar flow of Newtonian and non-Newtonian fluids with impermeable and permeable walls, determining the optimal configurations that facilitate fluid flow or minimize flow resistance. The geometric global constants, the volume occupied by the ducts (V) and the area occupied by the ducts (A), delimit the space occupied by the T-shaped structure and the degrees of freedom, the ratio between the diameter of the parent duct and daughter (aD) and the ratio between parent duct length and daughter (aL), are the main geometric parameters to be evaluated. The proposed study is assumed three-dimensional, laminar, incompressible, permanent and constant fluidodynamic properties being the flow regime governed by Reynolds number (Re). Construtal Design method, associated with the exhaustive search, was used to determine the global geometric constants, degrees of freedom and objective function in the geometric evaluation of the system. The numerical solution of the mass conservation and momentum equations is solved based on the finite volume method. The geometries and mesh of the computational domain was discretized through a three-dimensional composed of approximately 1,950,000 elements. The results show that the optimal geometries that presented resistance to the flow up to 30 times smaller than the other configurations. In addition, it was possible to verify that the Hess-Murray Law is not always valid, since the system adapts its optimal geometry to each flow condition, in order to provide a better flow architecture to meet the objective of minimizing resistance to flow in agreement with the Constructal Law. This work advanced in the present state of the art, since it developed a three-dimensional model without simplifications, applied to the fluid flow system in T-shaped structure using the Construtal Design method, validating the analytical results presented in the bibliography and presenting new references that allow increase the complexity of flow systems as well as the implementation of more advanced optimization methods.
50

Estudo numérico e design construtal de escoamentos laminares bifurcados em forma de Y

Sehn, Alysson January 2018 (has links)
Este trabalho tem como propósito investigar como a variação geométrica de determinados parâmetros envolvidos na construção de uma geometria bifurcada de seção circular, em forma de Y, afeta a resistência ao escoamento, tanto de fluidos newtonianos como não newtonianos. As geometrias estudadas foram construídas utilizando-se o princípio do Design Construtal. Os parâmetros variados foram a relação entre os comprimentos dos dutos pais e filhos, a relação entre os diâmetros dos mesmos dutos, e o ângulo central da estrutura em forma de Y. Para as relações geométricas lineares foram utilizados os valores de 0,5; 0,6; 0,7; 0,8; 0,9 e 1, enquanto para os ângulos, foram utilizados os valores de 155°, 135°, 115°, 95°, 75°, 45°, 25° e 10°. Os fluidos utilizados foram do tipo newtoniano e não newtoniano, dentre estes últimos, foram estudados fluidos pseudoplásticos e dilatantes. O trabalho foi realizado através de simulações numéricas, implementadas com a utilização do software comercial Ansys Fluent, o qual resolve as equações governantes através do método dos volumes finitos. As malhas utilizadas foram do tipo poliédrica. Os resultados indicam que há uma diferença em relação ao que se espera da literatura para as relações entre os diâmetros e os comprimentos. A Lei Hess-Murray indica que estas relações ótimas seriam de 2-1/3 para as relações entre os diâmetros e comprimentos. No presente trabalho, foram determinadas relações entre os diâmetros próximas de 0,6, e entre os comprimentos, iguais a 1. Os ângulos ótimos ficaram localizados no intervalo entre 100° e 135°. / This work aims to investigate how the geometric variation of certain parameters involved in the construction of a bifurcated Y-shaped circular cross-section geometry affects the flow resistance of both Newtonian and non-Newtonian fluids. The geometries studied were constructed using the Constructal Design principle. The parameters were the relationship between the lengths of the daughter and parent ducts, the relationship between the diameters of the same ducts, and the central angle of the Y-shaped structure. For the linear geometric relations, values of 0.5; 0.6; 0.7; 0.8; 0.9 and 1 where used, for the angles, the values of 155 °, 135 °, 115 °, 95°, 75 °, 45 °, 25 ° and 10 ° were used. The fluids used were of the Newtonian and non-Newtonian type, among the latter, pseudo plastic and dilatant fluids were studied. The work was carried out through numerical simulations, implemented with the commercial software Ansys Fluent, which solves the governing equations through the finite volume method. The meshes used were of the polyhedral type. The results indicate that there is a difference in relation to what is expected from the literature for the relationships between diameters and lengths. The Hess-Murray Law indicates that these optimal relations would be 2-1/3 for the relationships between diameters and lengths. In the present work, relationships between the diameters close to 0,6 were found and s equal to 1 between the lengths. The optimum angles were located in the range between 100 ° and 135 °.

Page generated in 0.0439 seconds